
Dr. rer. nat. Roman Matthias Keil

Research Statement
My research interests include static and dynamic program analysis, programming language

design in general, theoretical computer science, and foundations of software technology.

Within this area, I focus on analyzing higher-order functional programs by enforcing program

behavior and managing access control. In particular, my research interests aim at analysis

techniques for JavaScript, which make substantial use of contract monitoring, effect monitor-

ing, and dynamic effect inference to provide static and dynamic program guarantees.

Much of my previous work concerns the development of TreatJS [7], a language-embedded
higher-order contract system for JavaScript. TreatJS provides many novel aspects of both an
applied and theoretical nature. Moreover, I developed a language-embedded sandbox for

JavaScript, which allows running JavaScript code in isolation to the host application, and I

contributed to the theory of regular expressions, formal languages, and automaton theory.

Higher-Order Contracts For JavaScript
JavaScript is an untyped and dynamic programming language with objects and first-class

functions. While it is most well-known as the client-side scripting language for websites,

it is also increasingly used for non-browser development, such as developing server-side

applications with Node.js, for game development, to implement platform-independent mobile

applications, or as an intermediate language for other languages to target, such as TypeScript

or Dart. Hence, it is no surprise that JavaScript is the focus of many research works, out of the

need to create better development tools for JavaScript programmers and launch new language

features.

Unfortunately, JavaScript itself has no real security awareness:

– There is no namespace or encapsulation management.

– There is a global scope for functions and variables.

– All scripts have the same authority.

– Everything can be modified, from the fields and methods of an object over its prototype

property to the scope chain of a function closure.

Consequently, JavaScript code is prone to injection attacks, library code can read and

manipulate everything reachable from the global scope, and third-party code can access

sensitive data. Furthermore, side effects may cause unexpected behavior, so program

understanding and maintenance become difficult.

One possible solution to overcome these limitations is using contracts with run-time moni-

toring. Software contracts were introduced with Meyer’s Design by ContractTM methodology,
which stipulates invariants for objects and Hoare-like pre- and postconditions for functions.

Research Statement 1/6



Dr. rer. nat. Roman Matthias Keil

Since Meyer’s work, the contract idea has taken off and attracted a plethora of follow-

up works that range from contract monitoring of higher-order functional languages over

semantic investigations and studies on blame assignment to extensions in various directions:

polymorphic contracts, behavioral and temporal contracts, etc.

Contract monitoring has become a prominent mechanism to provide solid guarantees for

programs in dynamically typed languages while preserving their flexibility and expressiveness.

Hence, the first higher-order contract systems were devised for Scheme and Racket, but other

dynamic languages like JavaScript, Python, PHP, Ruby, and Lua have followed suit.

My research focuses on the design and implementation of TreatJS [7], a language-embedded,
higher-order contract system for JavaScript which enforces contracts by run-time monitoring.

Beyond the standard abstractions for higher-order contracts (flat contract, function contracts,

dependent contracts), TreatJS comes with the following unique features:

– TreatJS provides a contract constructor that uses contract abstraction to construct and
compose contracts at run-time. A contract constructor may contain arbitrary JavaScript

code and encapsulate a local state. Contract constructors are the building blocks for a

dependent, parameterized, and recursive contracts.

– TreatJS provides contract intersection and union operators similar to their type-theoretic
counterparts. These operators enable developers to specify independent properties in

independent contracts and combine them using intersection and union.

– TreatJS’s blame assignment for higher-order contracts with intersection and union [6] has
several novel aspects. First, it uses constraints to create a structure for computing positive

and negative blame according to subject and context satisfaction semantics, respectively.

Second, it applies a compatibility check to distinguish contracts from different sides of an

intersection or union, and third, it provides three general monitoring semantics that handles

the visibility of contracts inside predicate code.

– TreatJS gives noninterference a high priority. Its implementation employs a membrane-

based sandbox to keep the predicate code apart from the normal program execution, and

it encapsulates objects that are passed through the membrane to enforce write protection

and withhold external bindings from functions. Contracts are guaranteed not to exert side

effects on contract-abiding program execution.

– TreatJS is implemented as a library in JavaScript. It enables a developer to specify all aspects
of a contract using the full JavaScript language. Proxies implement delayed contract checking

of function and object contracts and guarantee full interposition for the whole JavaScript

language, including the with-statement and eval.

However, to bring user-friendly contracts to the JavaScript programming language, some

issues and directions are still open for future work. The following sections address some

open research topics I plan to continue in the short and medium-term.

Research Statement 2/6



Dr. rer. nat. Roman Matthias Keil

Static Contract Simplification
Writing formal and precise specifications in the form of contracts sounds appealing, but

it comes with a cost: Dynamic contract monitoring degrades the execution time of the

underlying program [9, 7]. All existing contract systems like Racket’s contract framework [3,

Chapter 7], Disney’s JavaScript contract system contracts.js [2], JSConTest2 [5], or TreatJS [7] for
JavaScript report a considerable slowdown when extending programs with contracts.

These costs arise because every contract extends a program with additional code that checks

the contract while executing. Moreover, developers may add contracts at frequently used

functions and objects on hot-paths in a program. In particular, predicates may repeatedly

check the same values, and different predicates may check redundant parts.

In contrast, static contract checking [11] avoids runtime costs by removing contracts after

inspection. However, static contract checking is not suitable for a language like JavaScript.

The dynamic nature of JavaScript requires dynamic contract monitoring: completely static

techniques would lead to a vast number of false positives.

My ongoing work on Static Contract Simplification attacks this issue with compile-time program
transformation. It adapts ideas from previous work on hybrid contract checking [10] and

static contract verification [8] to evaluate as much of a contract as possible and collapse the

remaining parts to a smaller contract that is more efficient to check at run-time. To this end,

we unroll contracts through the program code, detect and remove redundant parts, check

predicates where possible, and lift the remaining fragments to the enclosing module boundary.

Finally, we combine the remaining fragments to new contracts, which only contain parts that

must be checked at run-time. Such a simplification can be done even without knowing the

concrete execution of a program.

Native Contract Proxies
The implementation of TreatJS illustrates the need for a different proxy constructor that is
better suited for implementing contract wrappers. One issue with the current contract

implementation arises because a contract wrapper is different (not pointer-equal) from the

target object so that an equality test between wrapper and target returns false instead of

true. Thus, TreatJS already implements a transparent object proxy [4], ensuring transparent
operations with all JavaScript programs.

My work on Transparent Object Proxies for JavaScript [4] examined the issue with transparency

in various use cases of JavaScript proxies, and we showed that a significant number of object

comparisons would fail when gradually adding contracts to a program. Therefore, we propose

an alternative design for transparent proxies better suited for implementing a contract system

like TreatJS. However, the presented transparent proxy is a straightforward extension of the
already existing opaque proxy, i.e., it provides the same features and enables the user to

override the same traps as the opaque counterpart.

However, this power comes with some danger. Proxies may redefine the semantics of

the underlying target object arbitrarily, and thus they prevent specific optimizations in a

compiler. Examples from our work show that the sole introduction of simple forwarding

proxies degrades the execution time of a JavaScript program dramatically.

Research Statement 3/6



Dr. rer. nat. Roman Matthias Keil

In my previous research, I have already shown that it is sufficient to restrict contract proxies to

projections [4]. A native observer proxy that implements a projection could be more efficient as
it does not change the semantics of the underlying target object. JIT compilers would still be

able to optimize a program as usual. Therefore, to make dynamic contract monitoring efficient,

special contract proxies are essential to improve the run-time costs of contract monitoring.

Realm-aware Pure Functions
TreatJS uses normal JavaScript functions as predicates and executes the predicate code in
a sandbox to guarantee noninterference with the actual program execution. However, this

sandboxing impacts the execution of the underlying program, and it complicates the writing

of contracts because each needed reference must be imported into the sandbox.

In JavaScript, determining the effects of a function is nearly impossible as even simple property

access might be the call of a side-effecting getter function or the call of a handler trap that

causes an undesired behavior. Because of this flexibility, JavaScript would benefit from a new

function constructor that implements a pure function.
A pure function is a function that only maps its input into an output without causing any
observable side effects. A pure function can inspect its input, and it can evaluate pure

expressions, including function calls of pure functions and the access to a property that

is bound to a getter function (if this getter is also a pure function). Moreover, JavaScript

proxies would also benefit as handler traps can be restricted to pure functions to implement

an observer proxy that does not change the semantics of the target object. Besides, pure

functions could be realm-aware to grant effects on particular objects, i.e., they are bound to

a specific realm in which effects are permitted. One example for such a realm could be the

constraint set of a contract monitor, which might influence the evaluation of a handler trap.

Precise Blame Messages
The presence of intersection and union contracts complicates the computation of precise

error messages because the compliance of such a contract depends on failures and successes

in different sub-contracts. Moreover, a failing sub-contract does not automatically lead to

contract violation of the top-level assertion. Therefore, it is impossible to report a single

value that violates the contract: it always requires considering the entire contract, including

all predicates.

The adherence of intersection and union requires that the contract monitor connects each

contract with the enclosing operation. This connection creates a structure for computing pos-

itive and negative blame according to subject and context satisfaction semantics. Therefore,

the next step could be to develop an algorithm that computes precise error messages based

on this structure. An error message should be clear and concise, and developers should

immediately understand what happens and how to recover the error.

Research Statement 4/6



Dr. rer. nat. Roman Matthias Keil

Looking Forward
Static program analysis is the automated source code analysis performed without executing
the program’s source code. Due to its static nature, it compares more to testing the program’s

internal structure rather than functional testing. Therefore, static program analysis can

be stated to be complete but lacks correctness as it might need to rely on source code

abstraction.

The dynamic program analysis adopts the opposite approach and performs while the program
executes. It involves analyzing the behavior of a program, and while its outcome always

reflects the concrete execution correctly, it will never be complete. However, contrary to the

static opinion, which is fixed in size and can be done at compile-time before executing the

program’s code, dynamic program analysis comes with the cost to slow down the execution of

the underlying program. On the other side, one of its main benefits is that runtime analysis

can detect vulnerabilities too subtle or complex for static analysis. This benefit makes dynamic

program analysis particularly attractive for dynamic programming languages with less static

guarantees like JavaScript. But also other programming languages like Java might benefit from

extended dynamic program analysis to state more fine-grained invariants and refined program

behavior.

In a nutshell, dynamic program analysis is essential, despite its increased runtime impact.

Therefore, the question is not if we need dynamic program analysis in general; the question

is about reducing the overhead of runtime monitoring by using dynamic program analysis

most efficiently and how to combine static and dynamic program analysis to a hybrid solution

combining the best from both worlds.

I plan to continue my work on static contract simplification in the short term. So far, I have

implemented a prototype using PLT Redex, but there is as yet no implementation that works

with JavaScript contracts. To this end, I plan to develop a compile-time program transformation

that simplifies contract definitions to residual contracts that are collectively cheaper to check

at runtime. This transformation (which is somehow related to hybrid contract checking)

combines static and dynamic contract checking techniques and can also simplify contracts

that cannot be verified entirely at compile time.

n a larger perspective, I plan to continue my work on contract systems and pursue my overall

goal of bringing efficient and user-friendly contracts to JavaScript. Two concrete projects in this

line are1. the development of more efficient contract wrappers that implement a projection,

and 2. the design and implementation of a pure function construct for JavaScript.

Research Statement 5/6



Dr. rer. nat. Roman Matthias Keil

Reference
[1] John Tang Boyland, editor. 29th European Conference on Object-Oriented

Programming, ECOOP 2015, July 5-10, 2015, Prague, Czech Republic, volume 37
of LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.

[2] Tim Disney. contracts.js. https://github.com/disnet/contracts.js, April
2013.

[3] Matthew Flatt, Robert Bruce Findler, and PLT. The Racket Guide. http://docs.
racket-lang.org/guide/index.html, February 2017. Version 6.8.

[4] Matthias Keil, Sankha Narayan Guria, Andreas Schlegel, Manuel Geffken, and

Peter Thiemann. Transparent object proxies in javascript. In Boyland [1],

pages 149–173.

[5] Matthias Keil and Peter Thiemann. Efficient dynamic access analysis using

javascript proxies. In Antony L. Hosking, Patrick Th. Eugster, and Carl Friedrich

Bolz, editors, DLS’13, Proceedings of the 9th Symposium on Dynamic Languages,
part of SPLASH 2013, Indianapolis, IN, USA, October 26-31, 2013, pages 49–60.
ACM, 2013.

[6] Matthias Keil and Peter Thiemann. Blame assignment for higher-order

contracts with intersection and union. In Kathleen Fisher and John H. Reppy,

editors, Proceedings of the 20th ACM SIGPLAN International Conference on
Functional Programming, ICFP 2015, Vancouver, BC, Canada, September 1-3,
2015, pages 375–386. ACM, 2015.

[7] Matthias Keil and Peter Thiemann. Treatjs: Higher-order contracts for

javascripts. In Boyland [1], pages 28–51.

[8] Phuc C. Nguyen, Sam Tobin-Hochstadt, and David Van Horn. Soft contract ver-

ification. In Johan Jeuring and Manuel M. T. Chakravarty, editors, Proceedings
of the 19th ACM SIGPLAN international conference on Functional programming,
Gothenburg, Sweden, September 1-3, 2014, pages 139–152. ACM, 2014.

[9] Asumu Takikawa, Daniel Feltey, Ben Greenman, Max S. New, Jan Vitek, and

Matthias Felleisen. Is sound gradual typing dead? In Rastislav Bodík and

Rupak Majumdar, editors, Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg,
FL, USA, January 20 - 22, 2016, pages 456–468. ACM, 2016.

[10] Dana N. Xu. Hybrid contract checking via symbolic simplification. In Oleg

Kiselyov and Simon J. Thompson, editors, Proceedings of the ACM SIGPLAN
2012 Workshop on Partial Evaluation and Program Manipulation, PEPM 2012,
Philadelphia, Pennsylvania, USA, January 23-24, 2012, pages 107–116. ACM,
2012.

[11] Dana N. Xu, Simon L. Peyton Jones, and Koen Claessen. Static contract

checking for haskell. In Zhong Shao and Benjamin C. Pierce, editors, Proceed-
ings of the 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2009, Savannah, GA, USA, January 21-23, 2009, pages 41–52.
ACM, 2009.

Research Statement 6/6

https://github.com/disnet/contracts.js
http://docs.racket-lang.org/guide/index.html
http://docs.racket-lang.org/guide/index.html

	Higher-Order Contracts For JavaScript
	Static Contract Simplification
	Native Contract Proxies
	Realm-aware Pure Functions
	Precise Blame Messages
	Looking Forward
	Reference

