Extended Regular Expressions

Definition

- \(r, s, t := \epsilon | A | r + s | \cdot r s | r^* | r \& s | \neg r \)

- \(\Sigma \) is a potentially infinite set of symbols
- \(A, B, C \subseteq \Sigma \) range over sets of symbols
- \([r] \subseteq \Sigma^* \) is the language of a regular expression \(r \), where \([A] = A\)

Language Inclusion

Definition

Given two regular expressions \(r \) and \(s \),

\[r \subseteq s \iff [r] \subseteq [s] \]

- Decidable using standard techniques:
 - Construct DFA for \(r \& s \) and check for emptiness
- Drawback is the expensive construction of the automaton
- \(\text{PSPACE-complete} \)
Antimirov’s Algorithm

- Deciding containment for basic regular expressions
- Based on derivatives and expression rewriting
- Avoid the construction of an automaton
- \(\partial_a(r) \) computes a regular expression for \(a^{-1}[r] \) (Brzozowski) with \(a \in \Sigma \) and \(r \in \text{Re} \)

Lemma

For regular expressions \(r \) and \(s \),

\[
\forall u \in \Sigma^* \quad \partial_u(r) \subseteq \partial_u(s).
\]

First Symbols

Lemma

\[
\forall u \in \Sigma^* \quad (\nu(r) \Rightarrow \nu(s)) \land (\forall a \in \text{first}(r) \partial_a(r) \subseteq \partial_a(s))
\]

- Let \(\text{first}(r) := \{ a \mid aw \in [r] \} \) be the set of first symbols
- Restrict symbols to first symbols of the left hand side
- CC-Unfold does not have to consider the entire alphabet
- For extended regular expressions, \(\text{first}(r) \) may still be an infinite set of symbols

Choice of next step’s inequality is nondeterministic
An infinite alphabet requires to compute for infinitely many \(a \in \Sigma \)
Problems

- Antimirov’s algorithm only works with basic regular expressions or requires a finite alphabet.
- Extension of partial derivatives [Caron et al.] that computes an NFA from an extended regular expression.
- Works on sets of sets of expressions.
- Computing derivatives becomes more expensive.

Goal

- Algorithm for deciding \(J \subseteq K \) quickly.
- Handle extended regular expressions.
- Deal effectively with very large (or infinite) alphabets (e.g., Unicode character set).

Solution

- Require finitely many atoms, even if the alphabet is infinite.
- Compute derivatives with respect to literals.

Representing Sets of Symbols

A literal is a set of symbols \(A \subseteq \Sigma \).

Definition

\(A \) is an element of an effective boolean algebra \((U, \cup, \cap, \neg, \top, \bot) \) where \(U \subseteq \wp(\Sigma) \) is closed under the boolean operations.

- For finite (small) alphabets:
 \(U = \wp(\Sigma) \), \(A \subseteq \Sigma \).
- For infinite (or just too large) alphabets:
 \(U = \{ A \in \wp(\Sigma) \mid A \text{ finite or } \Sigma \text{ finite} \} \).
- Second-level regular expressions:
 \(\Sigma \subseteq \wp(\Sigma^*) \) with \(U = \{ A \in \wp(\Sigma^*) \mid A \text{ is regular} \} \).
- Formulas drawn from a first-order theory over alphabets.
 For example, \([a-z] \) represented by \(x \geq 'a' \land x \leq 'z' \).
Derivatives with respect to Literals

- Definition for $\partial_a(r)$?
- $\partial_a(r)$ computes a regular expression for $a^{-1}[r]$ (Brzozowski)

Desired property

$$\forall a \in A \quad [\partial_a(r)] \cup A^{-1}[r] = \bigcup_{b \in A} a^{-1}[r] \cup \bigcup_{c \in A} \partial_b(r)$$

Positive Derivatives on Literals

Definition

$$\delta^+_A(B) := \begin{cases} \epsilon, & B \cap A \neq \perp \\ \emptyset, & \text{otherwise} \end{cases}$$

Problem

With $A = \{ a, b \}$ and $r = (a \cdot c) \cup (b \cdot c)$,

$$\delta^+_A(r) = \delta^+_A(a \cdot c) \cup \delta^+_A(b \cdot c) = c \cdot c \cup \emptyset = c$$

Negative Derivatives on Literals

Definition

$$\delta^-_A(B) := \begin{cases} \epsilon, & B \cap A = \perp \\ \emptyset, & \text{otherwise} \end{cases}$$

Problem

With $A = \{ a, b \}$ and $r = (a \cdot c) \cup (b \cdot c)$,

$$\delta^-_A(r) = \delta^-_A(a \cdot c) \cup \delta^-_A(b \cdot c) = \emptyset \cup \emptyset = \emptyset$$
Positive and Negative Derivatives

- Extends Brzozowski’s derivative operator to sets of symbols.
- Defined by induction and flip on the complement operator

Definition

From $\partial_a(s) = \partial_a(s)$, define:

$\delta^+_A(r) := \bigcup_{a \in A} \partial_a(r)$

$\delta^-_A(r) := \bigcap_{a \in A} \partial_a(r)$

Lemma

For any regular expression r and literal A,

$[\delta^+_A(r)] \supseteq \bigcup_{a \in A} [\partial_a(r)]$

$[\delta^-_A(r)] \subseteq \bigcap_{a \in A} [\partial_a(r)]$

Matthias Keil, Peter Thiemann
Regular Expression Inequalities
December 15, 2014 13 / 21

Literals of an Inequality

Lemma

$r \subseteq s \iff (\nu(r) \Rightarrow \nu(s)) \land (\forall a \in \text{first}(r)) \partial_a(r) \subseteq \partial_a(s)$

- first(r) may still be an infinite set of symbols
- Use first literals as representatives of the first symbols

Example

1. Let $r = \{a, b, c, d\} \cdot d^*$, then $\{a, b, c, d\}$ is a first literal
2. Let $s = \{a, b, c\} \cdot c^* + \{b, c, d\} \cdot d^*$, then $\{a, b, c\}$ and $\{b, c, d\}$ are first literals

Matthias Keil, Peter Thiemann
Regular Expression Inequalities
December 15, 2014 14 / 21

Literals of an Inequality (cont’d)

Problem

Let $r = \{a, b, c\} \cdot d^*$, $s = \{a, b, c\} \cdot c^* + \{b, c, d\} \cdot d^*$, and $A = \{a, b, c, d\}$, then

$\delta^+_A(r) \subseteq \delta^+_A(s)$ (1)

$\delta^-_A((a, b, c) \cdot d^*) \subseteq \delta^-_A((a, b, c) \cdot c^*) + \delta^-_A((b, c, d) \cdot d^*)$ (2)

$\delta^+_A(d^*) \subseteq c^* + d^*$ (3)

- Positive (negative) derivatives yield an upper (lower) approximation
- To obtain the precise information, we need to restrict these literals suitably to next literals, e.g. $\{(a), (b, c), (d)\}$

Matthias Keil, Peter Thiemann
Regular Expression Inequalities
December 15, 2014 15 / 21
Next Literals

next(\epsilon) = \{\emptyset\}
next(A) = \{A\}
next(r+s) = \text{next}(r) \times \text{next}(s)
next(r.s) = \text{next}(r) \times \text{next}(s), \nu(r)
next(r^*) = \text{next}(r)
next(r&s) = \text{next}(r) \cap \text{next}(s)
next(r) = \text{next}(r) \cup \left[\{A\} | A \in \text{next}(r)\}\right]

Next Literals (cont’d)

Example
Let \(s = \{a, b, c\} \cdot c^* + \{b, c, d\} \cdot d^* \); then
\[
\text{next}(s) = \text{next}\{(a, b, c) \cdot c^*\} \times \text{next}\{(b, c, d) \cdot d^*\}
= \{(a, b, c) \times (b, c, d)\} = \{(a), (b, c), (d)\}
\]

Lemma
For all \(r \),
- \(\bigcup \text{next}(r) \supset \text{first}(r)\)
- \(\text{next}(r) \) is finite
- \((\forall A, B \in \text{next}(r)) A \cap B = \emptyset \)

Coverage

Lemma
Let \(\Sigma = \text{next}(r) \) and \(A \in \text{next}(r) \setminus \{\emptyset\} \).
- \((\forall a \in A) \partial_A(r) = \partial_A(r) \land \delta_A^r(r) = \delta_A^r(r) = \partial_A(r)\)
- \((\forall a \notin \Sigma) \partial_A(r) = \emptyset \)

Definition
Let \(A' \in \text{next}(r) \). For each \(0 \neq A' \subseteq A' \) define \(\partial_A(r) = \partial_A(r) \), where \(a \in A \).
Next Literals of an Inequality

- Next literal of $\text{next}(r \subseteq s)$
- Sounds to join literals of both sides $\text{next}(r) \times \text{next}(s)$
- Contains also symbols from s
- First symbols of r are sufficient to prove containment

Definition

Let \mathcal{L}_1 and \mathcal{L}_2 be two sets of disjoint literals:

$$\mathcal{L}_1 \triangleleft \mathcal{L}_2 := \{ (A_1 \cap A_2), (A_1 \cap \mathcal{L}_2) \mid A_1 \in \mathcal{L}_1, A_2 \in \mathcal{L}_2 \}$$

Left-based join corresponds to $\text{next}(r) \triangleleft \text{next}(s)$.

Definition

Let $r \triangleleft s$ be an inequality, define:

$$\text{next}(r \triangleleft s) := \text{next}(r) \triangleleft \text{next}(s)$$

Solving Inequalities

Lemma

$$r \subseteq s \iff (\nu(r) \Rightarrow \nu(s)) \land (\forall a \in \text{first}(r)) \partial_a(r) \subseteq \partial_a(s)$$

To determine a finite set of representatives:

- select one symbol a from each equivalence class $A \in \text{next}(r)$
- calculate with $\delta_a^r(r)$ or $\delta_a^s(r)$ with $A \in \text{next}(r)$

Theorem (Containment)

$$r \subseteq s \iff (\nu(r) \Rightarrow \nu(s)) \land (\forall A \in \text{next}(r \triangleleft s)) \partial_A(r) \subseteq \partial_A(s)$$

Conclusion

- Generalize Brzozowski’s derivative operator
- Extend Antimirov’s algorithm for proving containment
- Provides a symbolic decision procedure that works with extended regular expressions on infinite alphabets
- Literals drawn from an effective boolean algebra
- Main contribution is to identify a finite set that covers all possibilities
The language \([r] \subseteq \Sigma^*\) of a regular expression \(r\) is defined inductively by:

\[
\begin{align*}
[r] & = \{\epsilon\} \\
[A] & = \{a \mid a \in A\} \\
[r + s] & = [r] \cup [s] \\
[r \cdot s] & = [r] \cdot [s] \\
[r^*] & = [r] \cup [r^*] \\
[r \& s] & = [r] \cap [s] \\
\neg r & = \neg [r]
\end{align*}
\]

The nullable predicate \(\nu(r)\) indicates whether \([r]\) contains the empty word, that is, \(\nu(r)\) iff \(\epsilon \in [r]\).

\[
\begin{align*}
\nu(\epsilon) & = \text{true} \\
\nu(A) & = \text{false} \\
\nu(r + s) & = \nu(r) \lor \nu(s) \\
\nu(r \cdot s) & = \nu(r) \land \nu(s) \\
\nu(r^*) & = \text{true} \\
\nu(r \& s) & = \nu(r) \land \nu(s) \\
\nu(\neg r) & = \neg \nu(r)
\end{align*}
\]

\(\partial_a(r)\) computes a regular expression for the left quotient \(a^{-1}[r]\).

\[
\begin{align*}
\partial_a(\epsilon) & = \emptyset \\
\partial_a(A) & = \{a \in A\} \\
\partial_a(r + s) & = \partial_a(r) + \partial_a(s) \\
\partial_a(r \cdot s) & = \partial_a(r) \cdot \partial_a(s), \quad \nu(r) \\
\partial_a(r^*) & = \partial_a(r)^* \\
\partial_a(\neg r) & = \neg \partial_a(r) \\
\partial_a(r \& s) & = \partial_a(r) \cdot \partial_a(s) \\
\partial_a(\neg r) & = \neg \partial_a(r)
\end{align*}
\]
First Symbols

Let \(\text{first}(r) := \{ a \mid aw \in \mathcal{L}(r) \} \) be the set of first symbols derivable from regular expression \(r \).

\[
\begin{align*}
\text{first}(\epsilon) &= \emptyset \\
\text{first}(A) &= \{ A \} \\
\text{first}(r+s) &= \text{first}(r) \cup \text{first}(s) \\
\text{first}(rs) &= \{ \text{first}(r) \cup \text{first}(s) \} \\
\text{first}(r^*) &= \text{first}(r) \\
\text{first}(r\&s) &= \text{first}(r) \cap \text{first}(s) \\
\text{first}(r\mid) &= \{ a \in \text{first}(r) \mid \partial_a(r) \neq \Sigma^* \}
\end{align*}
\]

First Literals

Let \(\text{lLiteral}(r) := \{ a \mid aw \in \mathcal{L}(r) \} \) be the set of first symbols derivable from regular expression \(r \).

\[
\begin{align*}
\text{lLiteral}(\epsilon) &= \emptyset \\
\text{lLiteral}(A) &= \{ A \} \\
\text{lLiteral}(r+s) &= \text{lLiteral}(r) \cup \text{lLiteral}(s) \\
\text{lLiteral}(rs) &= \{ \text{lLiteral}(r) \cup \text{lLiteral}(s) \} \\
\text{lLiteral}(r^*) &= \text{lLiteral}(r) \\
\text{lLiteral}(r\&s) &= \text{lLiteral}(r) \cap \text{lLiteral}(s) \\
\text{lLiteral}(r\mid) &= \{ a \in \text{lLiteral}(r) \mid \partial_a(r) = \Sigma \}
\end{align*}
\]

Coverage

Lemma (Coverage)

For all \(a, u, \) and \(r \) it holds that:

\[
u \in [\partial_u(r)] \iff \exists A \in \text{next}(r): a \in A \land u \in [\delta_u^A(r)] \land u \in [\delta_u^r(r)]
\]
Theorem (Finiteness)
Let R be a finite set of regular inequalities. Define
$$F(R) = R \cup \{ \partial A(r \subseteq s) \mid r \subseteq s \in R; A \in \text{next}(r \subseteq s) \}$$
For each r and s, the set $\bigcup_{i \in \mathbb{N}} F(i(r \subseteq s))$ is finite.

Decision Procedure for Containment

\[\begin{array}{ll}
\text{(Disprove)} & \nu(s) \\
\Gamma \vdash \neg \nu(s) & r \subseteq s : \text{false} \\
\text{(Cycle)} & r \subseteq s \in \Gamma \\
\Gamma \vdash r \subseteq s & r \subseteq s : \text{true} \\
\text{(Unfold-True)} & r \subseteq s \notin \Gamma \\
\forall A \in \text{next}(r \subseteq s) : \Gamma \cup \{ r \subseteq s \} \vdash \partial A(r \subseteq s) & r \subseteq s : \text{true} \\
\text{(Unfold-False)} & r \subseteq s \notin \Gamma \\
\exists A \in \text{next}(r \subseteq s) : \Gamma \cup \{ r \subseteq s \} \vdash \partial A(r \subseteq s) & r \subseteq s : \text{false} \\
\end{array} \]

Prove and Disprove Axioms

\[\begin{array}{ll}
\text{(Prove-Identity)} & \Gamma \vdash r \subseteq r : \text{true} \\
\text{(Prove-Empty)} & \Gamma \vdash \emptyset \subseteq s : \text{true} \\
\text{(Prove-Nullable)} & \nu(s) \\
\Gamma \vdash \varepsilon \subseteq s & \varepsilon \subseteq s : \text{true} \\
\text{(Disprove-Empty)} & \exists A \in \text{next}(r) : A \neq \emptyset \\
\Gamma \vdash r \subseteq \emptyset & r \subseteq \emptyset : \text{false} \\
\end{array} \]
Soundness

Theorem (Soundness)

For all regular expression \(r \) and \(s \):

\[
\emptyset \vdash r \trianglelefteq s : \top \iff r \trianglelefteq s
\]

Matthias Keil, Peter Thiemann
Regular Expression Inequalities
December 15, 2014 10 / 13

Negative Derivatives

Counterexample

Let \(r = \{a, b, c, d\}d^* \), \(s = \{a, b, c\}d^* + \{b, c, d\}d^* \), and \(A = \{a, b, c, d\} \), then

\[
\delta^-(r) \subseteq \delta^+(s) \\
\delta^-(\{a, b, c, d\}d^*) \subseteq \delta^+(\{a, b, c\}d^* + \{b, c, d\}d^*)
\]

\[
\emptyset \trianglelefteq \emptyset \ (6)
\]

Matthias Keil, Peter Thiemann
Regular Expression Inequalities
December 15, 2014 12 / 13

Next Literals of an Inequality

Example

Let \(r = \{a, b, c, d\}d^* \), \(s = \{a, b, c\}c^* + \{b, c, d\}d^* \) then

\[
\text{next}(r \sqsubseteq s) = \text{next}(\{a, b, c, d\}d^*) = \text{next}(\{a, b, c\}d^* + \{b, c, d\}d^*) = \{\{a\}, \{b, c\}, \{d\}\}
\]

Matthias Keil, Peter Thiemann
Regular Expression Inequalities
December 15, 2014 13 / 13
Incomplete Containment

Conjecture

\[r \subseteq s \iff (\nu(r) \Rightarrow \nu(s)) \land ((\forall A \in \text{Mora}(r)) \text{delta}^*_A(r) \subseteq \text{delta}^*_A(s)) \]