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Abstract

JavaScript is an untyped and dynamic programming language with objects and first-class
functions. While it is most well-known as the client-side scripting language for websites,
it is also increasingly used for non-browser development, such as developing server-side
applications with Node.js, for game development, to implement platform-independent mobile
applications, or as a compilation target for other languages like TypeScript or Dart.

Unfortunately, JavaScript itself has no real security awareness: there is a global scope for
functions and variables, all scripts have the same authority, and everything can be modified,
from the fields and methods of an object over its prototype property to the scope chain of a
function closure. As a consequence, JavaScript code is prone to injection attacks, library code
can read and manipulate everything reachable from the global scope, and third-party code
can get access to sensitive data. Furthermore, side effects may cause unexpected behavior so
that program understanding and maintenance become difficult.

To overcome these limitations, we propose using contracts with runtime monitoring.
Software contracts were introduced with Meyer’s Design by Contract™ methodology which
stipulates invariants for objects as well as Hoare-like pre- and postconditions for functions.
Contract monitoring has become a prominent mechanism to provide strong guarantees for
programs in dynamically typed languages while preserving their flexibility and expressiveness.

This dissertation presents the design and implementation of TreatJS, a language-embedded,
higher-order contract system for JavaScript which enforces contracts by runtime monitor-
ing. Beyond the standard abstractions for higher-order contracts (flat contracts, function
contracts, dependent contracts), TreatJS provides intersection and union operators for con-
tracts and a contract constructor that constructs and composes contracts at runtime using
contract abstraction. Contract constructors are the building blocks for dependent contracts,
parameterized contracts, and recursive contracts.

Another novel aspect is TreatJS’s use of constraints to create a structure for computing
positive and negative blame according to the semantics of subject and context satisfaction,
respectively. Moreover, it applies a compatibility check to distinguish contracts from different
sides of an intersection or union, and it provides three general monitoring semantics which
handles the visibility of contracts inside of predicate code.

TreatJS is implemented as a library in JavaScript. It enables a developer to specify all
aspects of a contract using the full JavaScript language. JavaScript proxies implement delayed
contract checking of function and object contracts and guarantee full interposition for the full
JavaScript language, including the with-statement and eval. Moreover, its implementation
gives noninterference a high priority and it employs a membrane-based sandbox to keep the
predicate code apart from the normal program execution.

Finally, the implementation of TreatJS illustrates the need for a different proxy constructor
that is better suited for the implementation of contract wrappers. One issue with the current
contract implementation arises because a contract wrapper is different (not pointer-equal)
from its target object so that an equality test between wrapper and target returns false
instead of true. Thus, TreatJS comes with an implementation of a transparent object proxy
which ensures transparent operations with all JavaScript programs.





Zusammenfassung

JavaScript ist eine schwach typisierten und dynamische Programmiersprache mit Objekten und
Funktionen erster Klasse. Obwohl JavaScript am meisten als clientseitige Skriptsprache für
Webseiten bekannt ist wird sie mittlerweile auch vermehrt für nicht-Browser Entwicklungen
eingesetzt, wie zum Beispiel für die Entwicklung von serverseitigen Anwendungen mit
Node.js, für Spieleentwicklungen, für die Entwicklung von plattformunabhängigen Handy
Applikationen, oder als Zwischensprache für andere Sprachen wie TypeScript oder Dart.

Leider besitzt JavaScript selbst nur ein geringes Sicherheitsbewusstsein: es gibt einen
globalen Bereich für Funktionen und Variablen, alle Skripte haben die gleichen Rechte, und
jeder kann alles verändern, von den Feldern und Methoden eines Objekts, über die Prototype-
Eigenschaft, bis hin zu dem Sichtbarkeitsbereich von Variablen innerhalb einer Funktion.
Die Konsequenz davon ist, dass JavaScript anfällig für Code-Injektion ist, Bibliotheken alles
lesen können was über den globalen Bereich erreichbar ist und fremder Code Zugriff auf
sensibel Daten bekommen kann. Darüberhinaus können unerwartete Seiteneffekte entstehen
und Verständnis und Wartung von JavaScript Programmcode werden erschwert.

Um diesen Einschränkungen entgegenzuwirken schlagen wir die Verwendung von einem
Vertragssystem mit Laufzeitüberwachung vor. Vertragssysteme wurden mit Meyer’s Design
by Contract™ Technologie eingeführt und sehen die Definition von Invarianten für Objekte,
sowie Hoare-ähnliche Vor- und Nachbedingungen für Funktionen vor. Gerade für dynamisch
typisierte Sprachen sind Vertragssysteme interessant da sie starke Programmgarantien er-
möglichen ohne dabei die Flexibilität und Ausdrucksstärke der Sprache einzuschränken.

Diese Dissertation präsentiert Design und Implementierung von TreatJS, einem Ver-
tragssystem höherer Ordnung für JavaScript. Neben den Standard Abstraktionen für
Verträge stellt TreatJS Schnitt- und Vereinigungsoperatoren für Verträge und einen Ver-
tragskonstruktor, welcher Verträge mittels Abstraktion zur Laufzeit erzeugt, zur Verfügung.
Vertragskonstruktoren sind die Bauelemente für alle zustandsbehafteten Vertrage, wie zum
Beispiel argumentabängige Verträge, parametrierbare Verträge oder rekursive Verträge.

Eine weitere Neuerung in TreatJS ist die Verwendung von Constraints zur Berechnung
von Schuldzuweisungen nach Vertragsverletzungen. Des Weiteren verwendet TreatJS eine
Kompatibilitätsprüfung um Verträge von unterschiedlichen Seiten eines Schnitt- oder Vere-
inigungsoperator auseinanderhalten und TreatJS stellt drei verallgemeinerte Semantiken zur
Verfügung, welche die Sichtbarkeit von Verträgen in Prädikaten regeln.

TreatJS ist als eine Bibliothek in JavaScript entwickeln. Die Bibliothek ermöglicht es
einem Entwickler alle Aspekte eines Vertrags in JavaScript selbst zu spezifizieren. JavaScript
Proxies übernehmen die Überprüfung von Objekt und Funktionsverträgen zur Laufzeit und
garantieren eine vollständige Zwischenschaltung der Verträge für die komplette JavaScript
Sprache, inklusive des with Statements und eval. Darüberhinaus räumt TreatJS Nichtein-
mischung eine hohe Bedeutung ein und stellt eine eingebettete Sandbox zur Verfügung um
Prädikate in Isolation zur normalen Programmausführung zu überprüfen.

Darüberhinaus zeigt die Implementierung von TreatJS die Notwendigkeit für einen anderen
Proxy Konstruktor welche besser für die Entwicklung eines Vertragssystems geeignet ist.
Ein Problem mit der aktuellen Implementierung in JavaScript ist, dass Proxy Objekte nicht
referenzgleich zu ihrem Zielobjekt sind, und daher jeder Vergleich zwischen Proxy und
Zielobjekt zu einem veränderten Ergebnis führt. Aus diesem Grund stellt TreatJS auch die
Implementierung von einem transparenten Proxy in der Virtuellen Maschine zur Verfügung.
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»Philosophers are people who know less and less about more and more, until they
know nothing about everything. Scientists are people who know more and more about
less and less, until they know everything about nothing.«

— Konrad Lorenz





1 Introduction

JavaScript [33] is an untyped and dynamic programming language with objects and first-class
functions. While it is most well-known as the client-side scripting language for web sites1,
it is also increasingly used for non-browser development, such as developing server-side
applications with Node.js [84], for game development, to implement platform-independent
mobile applications, or as an intermediate language for other languages to target, such as
TypeScript [106] or Dart [22]. Hence, it does not come as a surprise that JavaScript is now
in the focus of many researchers’ works, out of the need to create better development tools
for JavaScript programmers and to launch new language features.

Syntax and semantics of JavaScript are standardized in the ECMAScript language
specification [33]. The specification includes the grammatical structure of JavaScript along
with the semantics of that structure and a formal specification of JavaScript’s core API.
Even though JavaScript itself provides only a small core API, it includes built-in objects
for representing numbers and dates, mathematical calculations, text processing with regular
expressions, and to describe collections of data. It also includes a number of fundamental
objects, upon which all other objects are based. In contrast to other languages, JavaScript’s
core API does not contain any I/O facilities like file reading, networking, event handling, or
graphics. Providing features like this is up to the host environment. The most well-known
host extension is the Document Object Model (DOM), an API for manipulating HTML and
XML documents provided by web browsers.

JavaScript is a platform-independent language, typically implemented as an interpreted
language. There exists a large number of active JavaScript implementations (aka JavaScript
engines). The most common engines are Mozilla’s SpiderMonkey [99] engine, which is part
of the Gecko (Firefox) project, Google’s V8 [107] JavaScript engine, which is used in Google
Chrome and Node.js, Microsoft’s Chakra [14] for Microsoft Edge, or JavaScriptCore [59]
(Webkit), which is marketed as Nitro and used on Apple devices.

Even though JavaScript is an interpreted language, most engines apply just-in-time (JIT)
compilation or variations of that technology when executing JavaScript programs to improve
the performance of applications written in JavaScript. It is this fact that makes JavaScript a
popular and ubiquitous programming language. JavaScript is the most popular and fastest
growing client-side programming languages on the web.

JavaScript Issues

Almost all JavaScript programs rely on third-party libraries, such as AngularJS, jQuery, or
Prototype, to extend the native API with new features and to help developers to concentrate
upon more distinctive applications. Some of these libraries are packed with the application,
but others are loaded at runtime. Hence, the finally executed code of a JavaScript program
may be composed of scripts from different origins, sometimes accumulated by dynamic
loading and fragments from runtime code generation.

Unfortunately, JavaScript itself has no real security awareness: there is no namespace or
encapsulation management, there is a global scope for functions and variables, all scripts
have the same authority, and everything can be modified, from the fields and methods of an
object over its prototype property to the scope chain of a function closure.

1 94.5% of all websites use JavaScript, according to http://w3techs.com (status of March 2017)

http://w3techs.com
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As a consequence, JavaScript code is prone to injection attacks. Library code can read
and manipulate everything reachable from the global scope and third-party code can get
access to sensitive data. Furthermore, side effects may cause unexpected behavior and
program understanding and maintenance becomes difficult.

Facebook [34] is one of the best-known examples for a website that makes substantial use
of JavaScript. The social network stores and displays private data of their users, allows to
have public conversations and to send private messages, shows user specific advertisement,
and allows their users to add their own application to the main site.

Facebook applications are intended to interact with the user’s profile. They gain access
to the Facebook page document and does not run in isolation from the main site. However,
their action has to be restricted. The application should neither manipulate anything but
its own realm nor should it communicate or perform unauthorized actions on behalf of the
user. Thus, applications have to be written in an HTML variant and a JavaScript subset
that allows to reason about its behavior.

Key Challenges of Present Research on JavaScript

Today’s state of the art in securing JavaScript applications that include code from different
origins is an all-or-nothing choice: scripts either run in isolation or gain full integration.
Browsers apply protection mechanisms such as the same-origin policy [93] or the signed script
policy [98], both of which decide whether to grant access to a particular resource or not.

Clearly, script isolation is the first choice. It guarantees noninterference with the working
of the application as well as the preservation of data integrity and confidentiality. However,
some scripts must have access to the application state and others are even allowed to change
it while preserving the integrity and confidentiality constraints of the host application.

However, all included scripts run in combination with the main script in the user’s
browser and the host application cannot exert control over the included libraries. As some
JavaScript fragments are ill-behaved, it requires to control the use of data by included scripts,
to investigate effects, and to apply policies that restrict the behavior of a program.

This sounds like a challenge to static analysis techniques, to compilers, to automated
testing, and to type systems, all of which inspect the code of a program to make guarantees
about the runtime behavior of that program. However, because of JavaScript’s dynamics,
there is very little a traditional language-based analysis mechanism can do.

Thus, managing untrusted JavaScript code has become one of the key challenges of
present research on JavaScript [2, 53, 23, 24, 92, 77, 88, 75, 74, 48]. Existing approaches are
either based on restricting JavaScript code to a statically verifiable language subset (e.g.,
Facebook’s FBJS [35] or Yahoo’s ADsafe [1]) or on enforcing an execution model that only
forwards selected resources into an otherwise isolated compartment by filtering and rewriting
like Google’s Caja project [47, 79]. However, these approaches have known deficiencies: They
either need to restrict the usage of JavaScript’s dynamic features or they do not apply to
code generated at runtime. Furthermore, they require extra maintenance efforts because
their analysis needs to be adapted when the language evolves.

Contracts with Run-Time Monitoring

One possible solution is to have contracts with runtime monitoring. Software contracts were
introduced with Meyer’s Design by Contract™ methodology [76] which stipulates invariants
for objects as well as Hoare-like pre- and postconditions for functions a programmer regards
as essential for the correct execution of a program. Since then, the contract idea has taken
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off and attracted a plethora of follow-up works that range from contract monitoring for
higher-order functional languages [41] over semantic investigations [9, 40] and studies on
blame assignment [26, 108] to extensions in various directions: polymorphic contracts [3, 8],
behavioral and temporal contracts [8, 32], etc.

Contract monitoring has become a prominent mechanism to provide strong guarantees for
programs in dynamically typed languages while preserving their flexibility and expressiveness.
Hence, it does not come as a surprise that the first higher-order contract systems were
devised for Scheme and Racket [41], out of the need to create maintainable software. Other
dynamic languages like JavaScript[61, 17], Python [90], PHP [87], Ruby [18], and Lua [73]
have followed suit.

Nowadays, contract systems are available for many languages [41, 57, 62, 70, 55, 16, 36, 13]
and come with a wealth of features [64, 54, 8, 32, 105, 28, 3].

Language-embedded Systems

Unlike static verification methods, which are imprecise due to JavaScript’s dynamic features,
dynamic monitoring guarantees full observability and works for all code, regardless of its
origin. However, implementing monitoring facilities inside a JavaScript engine (like it is done
for WebKit [92]) is fragile and incomplete, as such a solution only works for one engine and
is hard to maintain due to the high activity in engine development and optimization.

Thus, many contract systems [57, 16, 36, 64, 105, 28, 3] are language-embedded: They are
implemented as a library in the target language itself and all aspects are accessible through
an API. Language-embedded systems are distributed as a language extension and can easily
be included in existing projects. No source code transformation or change in the JavaScript
runtime system is required.

This approach is advantageous because it does not tie the contract system to a particular
implementation, users do not need to learn a separate contract language, and there is no
need to have specialized contract tools.

1.1 Contributions of this Thesis

This dissertation presents TreatJS, a language-embedded, higher-order contract system for
JavaScript which enforces contracts by runtime monitoring. Beyond providing the standard
abstraction for building higher-order contracts (flat, function, and object contracts), TreatJS’s
novel contributions are its systematic approach to blame assignment, its support for contracts
in the style of intersection and union types, its guarantee of a non-interfering contract
execution, and its notion of contract abstraction, which is the building block for dependent
contracts, parameterized contracts, stateful contracts, and recursive contracts.

The content of this dissertation encompasses the following research topics.

1.1.1 Higher-order Contracts for JavaScript

The main part of this thesis focuses on the design and implementation of TreatJS. TreatJS
supports most features of existing contemporary contract systems (embedded contract
language, contracts as projections, full interposition) in combination with a wealth of novel
features and features that have not been implemented in this combination before.

TreatJS is implemented as a library in JavaScript and relies on JavaScript proxies to
guarantee full interposition of contracts. It further exploits reflection and JavaScript’s
dynamic features to run contract code in a configurable degree of isolation, which guarantees
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that the execution of contract code does not interfere with the execution of a contract-abiding
host program.

Parts of this work appeared in the conference proceedings of the European Conference on
Object-Oriented Programming, ECOOP 2015 [68] and in the proceedings of the 20th ACM
SIGPLAN International Conference on Functional Programming, ICFP 2015 [67].

1.1.2 Static Contract Simplification

Contracts and contract monitoring are a powerful mechanism for enforcing guarantees at
runtime. However, the insertion of contract checks and the introduction of proxy objects
significantly impact the execution time of a program.

To overcome this issue, this part presents static contract simplification. Its objective is to
pre-evaluate contracts at compile time and to apply compile-time transformations to reduce
as much from a contract as possible. Our key technique is to propagate contracts statically
through the program code and to evaluate contracts where possible. Remaining fragments,
which cannot be checked statically, where lifted to the enclosing boundary and condensed to
shorter interface descriptions which are collectively cheaper to check at runtime.

1.1.3 Transaction-based Sandboxing for JavaScript

The ideal contract system should not interfere with the execution of a contract-abiding host
application as long as the application code does not violate any contract. Interference issues
between the host application and contract monitoring arise from executing unrestricted
JavaScript code in predicates. This code may try to write to an object that is also visible
to the application, it may throw an exception, or it may not terminate. TreatJS forbids all
write operations to external objects using sandboxing.

This part presents DecentJS, a language-embedded sandbox for full JavaScript. It enables
scripts to run in a configurable degree of isolation with fine-grained access control. It further
provides a transactional scope in which effects are logged for inspection and in which effects
can be committed to the application state or rolled back.

The implementation relies on JavaScript proxies to guarantee full interposition for the full
JavaScript language and for all code, including dynamically loaded scripts and code injected
via eval. Its only restriction is that scripts must be compliant with JavaScript’s strict mode.

1.1.4 Transparent Object-Proxies for JavaScript

A proxy is a variant of an object that mediates access to another target object. A typical
use case is contract monitoring, where proxies implement contracts on target objects. The
proxy is then intended to be used in place of the target.

However, JavaScript proxies come with a limitation: A proxy, wrapping a target object,
is a new object and different from its target. For distinct proxies, the equality (==) and strict
equality (===) operator returns false, even if the target object is the same.

Object equality becomes an issue if a proxy is different (i.e., not pointer-equal) from the
wrapped target object and an equality test between proxy and target object (or between two
proxy objects of the same target) return false instead of true. More precisely, the expected
result of such an equality test depends on the use case.

Thus, one important question in the design of a proxy API is whether a proxy object
should inherit the identity of its target. Apparently, proxies should have their own identity
for security-related applications whereas other applications, in particular, contract systems,
require transparent proxies that compare equal to their target objects.



Introduction 5

In this part, we show that a significant number of object comparisons fail when mixing
opaque proxies and their target objects, e.g., when gradually adding contracts to a program.
As neither the transparent nor the opaque implementation of proxies is appropriate for all
use cases, we propose an alternative design for transparent proxies that is better suited for
use cases like contract wrappers and access restricting membranes. The new proxy object is
transparent with respect to equality. However, we use object capabilities to create proxies in
an identity-realm and create an equality function that reveals proxies of its realm.

Parts of this work appeared in the conference proceedings of the European Conference on
Object-Oriented Programming, ECOOP 2015 [63].

1.1.5 Timeline

2013

JSConTest2
Efficient Dynamic

Access Analysis using
JavaScript Proxies

2014

JavaScript Proxies
Transparent Object

Proxies for JavaScript

2015

TreatJS
Higher-Order Contracts

for JavaScript

2016

DecentJS
Transaction-based
Sandboxing of
JavaScript

?

Ongoing Work
Static Contract
Simplification,

Temporal Contract for
JavaScript

Our work on contracts started with the implementation of JSConTest2, which is a redesign and
a reimplementation of JSConTest [54] using JavaScript proxies. JSConTest2 is a framework
that helps to investigate effects of unfamiliar JavaScript code by monitoring read and write
operations on objects through access permission contracts.

The proxy-based implementation addresses some shortcomings of the previous, translation-
based, version: it guarantees full interposition for the full JavaScript language, it runs faster
and consumes less memory, and it is safe for future language extensions. But the proxy-based
implementation also comes with a limitation. For distinct proxies the normal (==) and strict
(===) equality operator returns false, even if the target object is the same. So, out of the
need to implement non-interfering contract monitors, we start with examining transparency
issues with proxy objects in JavaScript. To overcome this, we provide an implementation of
a new transparent proxy constructor that is better suited to implement contract wrappers.

Our main project, TreatJS, is a further development of JSConTest2. Both are language-
embedded systems and both built on the same technological basis, JavaScript proxies and
membranes, to implement dynamic contract monitoring. Whereas JSConTest2 only applies
access permission contracts, TreatJS applies higher-order contracts in the style of Findler
and Felleisen [41]. Furthermore, TreatJS applies a membrane-based sandbox to encapsulate
the execution of the predicate code and to guarantee a non-interfering contract execution.

Later, this sandbox (DecentJS) has become a standalone project. DecentJS enables to
execute JavaScript functions in isolation to the application state and it provides a transactional
scope in which effects are logged for inspection by an access control policy.

Our ongoing work focusses on compile-time contract simplification and further contract
constructs, like temporal contracts for JavaScript, polymorphic contracts, stateless and
stateful contracts, and the adaptation of other constructs known from type systems.
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1.2 Outline of this Thesis

This dissertation is structured into four main parts which are organized as follows: Chapter 3
starts with an introduction into object reflection and JavaScript proxies.

Part I Chapter 4 introduces TreatJS from a programmer’s point of view and illustrates the
basic principles underlying the contract system through a series of examples. Chapter 5
explains how contract monitoring in TreatJS works. Chapter 6 explains the principles
underlying the implementation and Chapter 7 reports on our experiences from applying
TreatJS to a range of benchmark programs.

Part II Chapter 8 introduces DecentJS, the language-embedded sandbox used in TreatJS.
Chapter 9 provides a series of examples that explain DecentJS’s facilities. Chapter 10
presents the design principles underlying DecentJS and Chapter 11 reports on our experi-
ence with applying DecentJS to benchmark programs.

Part III Chapter 12 discusses different use cases of JavaScript proxies and assesses them
with respect to the requirements on proxy transparency. Chapter 13 discussion the
programmer’s expectation from an equality operation and presents alternative design to
obtain proxy transparency. Chapter 14 presents a novel design for transparent proxies in
the VM and Chapter 15 sketches the prototype implementation of an observer proxy, a
variation of a transparent proxy that implements a projection.

Part IV Chapter 16 introduces the basic ideas underlying our ongoing work on static contract
simplification. Chapter 17 explains the simplification through a series of examples and
Chapter 18 gives an insight into the runtime improvements of our contract simplification.

Finally, Chapter 19 discusses related work not already mentioned in the thesis, Chapter 20
addresses some open research challenges concerning TreatJS, and Chapter 21 concludes.



2 On JavaScript

This chapter introduces some JavaScript features which are essential for this thesis. This
chapter is not to introduce JavaScript’s syntax and semantics as a whole; it’s purpose is
only to recap some language-concepts which are special to the language and which might be
unusual and confusing for non-JavaScript developers.

The eval Function

Let’s start with the most prominent example: eval. The eval function takes a string value
representing a JavaScript expression, statement, or sequence of statements, and evaluates
the string as normal JavaScript code in the current execution environment. The following
example demonstrates using eval for evaluating an arithmetic expression.

1 eval("1 + 1"); // returns 2

Listing 2.1 Example of using eval.

While evaluating the JavaScript code, eval can access variables and functions defined in the
enclosing scope, for example, it can access the variable x for evaluating an expression.

1 let x = 1:
2 eval("x + 1"); // returns 2

Listing 2.2 Example of using eval (cont’d).

Moreover, eval can override existing variables and it can declare new variables and functions
in the enclosing scope. The following example demonstrate the creation of a plus function
within eval which can be accessed from the current execution environment.

1 eval("let plus = function(x, y) { return x+y; }"); // returns undefined
2 plus(1, 1); // returns 2

Listing 2.3 Example of using eval (cont’d).

The example above creates a new function, plus, in the surrounding context which can later
be used by other JavaScript code.

Indirect uses of eval

Apart from directly calling eval, JavaScript enables developers to call eval indirectly, i.e., by
invoking it via a reference other than eval. Unlike the direct use of eval which evaluates the
JavaScript code in the local scope, indirect uses of eval evaluate code in the global scope.
This means that eval can be used to access and declare global variables and functions, as
the following example demonstrates.

1 let e = eval;
2 e("let plus = function(x, y) { return x+y; }"); // returns undefined

Listing 2.4 Example of using eval (cont’d).

This concept enables JavaScript developers to extend the global scope with new functions,
but also to manipulate and override anything reachable from the global scope.
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Strict Mode

JavaScript’s strict mode is an optional restricted variant of JavaScript. However, strict mode
is not a subset of the normal JavaScript semantics as it provides a slightly different semantics.

Strict mode can either be applied to the entire script or to individual functions. To invoke
strict mode, developers can put the "use strict"; statement in the top of a JavaScript script
or the top of a function body.

1 "use strict";
2 let x = 1 + 1;

Listing 2.5 Example of using JavaScript’s strict mode.

One important change in JavaScript’s strict mode semantics is that eval can no longer
introduce new variables in the surrounding scope. Usually, eval can access and declare new
variables and functions in the surrounding scope. However, in strict mode eval van only
access and overwrite existing variables, but not declare new ones.

To invoke script mode for eval, one can either invoke eval from a strict mode context or
place the "use strict" statement in front of the string.

1 eval("let x = 1 + 1; x;"); // returns 2
2 x; // returns undefined

Listing 2.6 Example of using JavaScript’s strict mode (cont’d).

JavaScript’s with Statement

The with statement adds an object to the head of the scope chain used while evaluating the
statement’s body. As JavaScript’s property lookup searches for unqualified property names
in the enclosing scopes, the with statements extends the scope with the properties defined in
the object. If a variable is not defined in the local scope, then the variable access ends up in
a property lookup on the given object, as the following example demonstrates.

1 with({ x:1, y:1 }) {
2 let r = x+y; // returns 2
3 }

Listing 2.7 Example of using JavaScript’s with statement.

Using with is very special as it is subject to a certain kind of dynamic: as the properties in
the object can change over time, we can extend or change the scope of the nested statements.
In general, scopes can only be changed from the inside, i.e., from scripts that run in that
scope. The with statement, in contrast, enables developers to extend or change the scope by
changing the object, which can also be done from another scope.

1 let object = { x:1, y:1 };
2 with(object) {
3 let r = x+y; // sets r to 2
4 }
5 object.x = 2;
6 with(object) {
7 let r = x+y; // sets r to 3
8 }

Listing 2.8 Example of using JavaScript’s with statement (cont’d).
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Moreover, the with statement enables developers to place an object with a getter or setter
function in top of the scope chain and thus to enhance variables with its own state, encoded
in the scope of the getter or setter function.

1 let i = 1;
2 let object = { get x() { return i++; }, get y() { return i; } };
3 with(object) {
4 let r = x+y; // sets r to 2
5 }

Listing 2.9 Example of using JavaScript’s with statement (cont’d).

Unqualified this Pointer

JavaScript’s this keyword usually refers to the receiver of a function. However, this depends
on how the function is called and whether we are in strict-mode or normal-mode. In the
global context, this refers to the global object. In a function context, the value of this
depends on how the function is called.

In non-strict mode and when calling a function directly without giving a value for this,
this will point to the global object.

1 function f() {
2 return this;
3 }
4 f(); // returns the global object

Listing 2.10 Example of using JavaScript’s this keyword.

In strict-mode, in contract, this will refer to whatever it was set to before entering the
function, or undefined if it was not set before.

1 function f() {
2 return this;
3 }
4 f(); // returns undefined

Listing 2.11 Example of using JavaScript’s this keyword (cont’d).

However, when calling a function as a method on an object, or when using methods like
call, apply, and bind which define an explicit value for this, then this refers to that value,
whether in strict mode or not. The following example demonstrates this behavior.

1 let object = {};
2 object.f = function () {
3 return this;
4 }
5 object.f(); // returns object

Listing 2.12 Example of using JavaScript’s this keyword (cont’d).

1 let object = {};
2 function f() {
3 return this;
4 }
5 f.call(object); // returns object

Listing 2.13 Example of using JavaScript’s this keyword (cont’d).
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Unqualified this pointers typically arise when calling a function without defining an explicit
value for this. This concept can be used to always obtain a pointer to the global object,
simply by calling a function directly and returning the this value.

1 let global = (function() { return this; })();

Listing 2.14 Example of using JavaScript’s this keyword (cont’d).

As this construct can be used in any context, each execution context can access the global
object, even it is nested somewhere in another execution context. However, JavaScript’s
strict-mode prohibits unqualified this pointers as it requires this to be defined explicitly or
it returns undefined.

Redefining Global Values

Another particularity of JavaScript is that each script can access and override anything
reachable from its own or the global execution context. This also includes global and native
functions and methods.

1 Function.prototype.toString = (function() { return "Hallo"; })();

Listing 2.15 Example of overriding JavaScript’s Function.prototype.toString method.

In this example, the included script overrides the global Function.prototype.toString method.
Each subsequent call of the toString methods, either as a method call on a function object
using call or apply uses the new function instead of the original one.

1 function plus(x, y) {
2 return x+y;
3 }
4 plus.toString(); // return "Hallo"

Listing 2.16 Example of overriding JavaScrip’s Function.prototype.toString method
(cont’d).

This feature makes it pretty hard to reason about the effects of JavaScript function as we
can never be sure which function we execute. Guarantees can only be given if a library is
loaded first of all and stores itself a reference to the original functions it attempts to use.



3 Object Reflection in JavaScript

Reflection is a meta-programming technique that enables a programming language to examine
and to modify its own structure or behavior during program execution. Reflection is essential
to build language-embedded systems that monitor program code while the program executes.
Thus, reflection is commonly used for dynamic program analysis, to instantiate mock objects,
or to enforce certain properties at runtime. Formally, meta-programming distinguishes three
kinds of mediation [12, 82, 69]:

Introspection. Introspection is the ability to examine and to reason about the program’s
own state. A meta-program gains read-only access to a model of itself.

Self-modification. Self-modification is the ability to modify its own structure. A meta-
program gains write access to a model of itself.

Intercession. Intercession is the ability to redefine its own semantics. A meta-program can
modify its own execution state or alter its own behavior.

JavaScript provides reflection facilities by two built-in objects: Reflect and Proxy. Whereas
the Reflect object provides methods to delegate interceptable operations to the default
implementation of these operations, the Proxy object enables to enhance the functionality of
a target object and to fully interpose all operations on an object, including property lookup,
property assignment, property enumeration, and functions call on a function object.

This chapter introduces the JavaScript Proxy API, the new meta-programming features
of the ECMAScript 6 [33] standard. JavaScript proxies have already been used to implement
revocable references [21], for client-side sandboxing of third-party JavaScript code [2], for Dis-
ney’s JavaScript contract system Contracts.js [30], to enforce access permission contracts [64],
and as cross-compartment wrappers in SpiderMonkey’s compartment concept [109].

3.1 Proxies

A proxy is an object intended to be used in place of another target object, which may be a
native object (a non-proxy object) or another proxy object. As a proxy may be the target
for another proxy, we call the native object that is transitively reachable through a chain of
proxies the base target for each proxy in this chain. The behavior of a proxy is controlled
by a handler object, which may modify the original behavior of the target object in many
respects. A typical use case is to have the handler to mediate access to the target object.

The JavaScript Proxy API [33] provides a Proxy constructor that takes the proxy’s target
object and a handler object. Both target and handler may be in turn a proxy object.

1 let target = { /* some target object */ };
2 let handler = { /* some handler object */ };
3 let proxy = new Proxy (target, handler);

Listing 3.1 Example of a proxy construction.

The handler object is a placeholder which provides optional trap methods that are called
when the corresponding operation is performed on the proxy. Operations like property read,
property assignment, and function application result in a meta-level call to the corresponding
trap in the handler object. The trap function may implement the operation arbitrarily,
for example, by forwarding the operation to the target object. The latter is the default
functionality if the trap is not specified.
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handler

proxy targetproxy.x;
proxy.x=1;

handler.get(target, "x", proxy);
handler.set(target, "x", 1, proxy);

target["x"];
target["x"]=1;

Meta-Level
Base-Level

Figure 3.1 Example of a proxy operation. The property get proxy.x invokes the trap handler.
get(target, "x", proxy) and the property set operation proxy.x=1 invokes trap handler.set(
target, "x", 1, proxy). The handler simply forwards the operation to the proxy’s target.

The following listing demonstrates the implementation of a default handler which forwards
all property get and set operations to their default implementation.

1 var handler = {
2 get: function(target, name, receiver) {
3 return Reflect.get(target, name, receiver);
4 },
5 set: function(target, name, value, receiver) {
6 return Reflect.set(target, name, value, receiver);
7 }
8 }

Listing 3.2 Example of a proxy handler.

For example, a property get like proxy.x invokes the trap handler.get(target, "x", proxy)
if that trap is present and a property assignment like proxy.x=1 may invoke handler.set(
target, "x", 1, proxy). Untrapped operations are forwarded to the target object by default.
Figure 3.1 illustrates this situation with a handler that simply forwards all operations.
Performing an operation (like property get or property set) on the proxy object results in a
meta-level call to the corresponding trap on the handler object.

However, a handler may redefine or extend the semantics of an operation arbitrarily. For
example, a handler may implement a copy-on-write policy on its target object by intercepting
all property write operations and serving reads on them locally. The following listing
demonstrates the implementation of such a handler object.

1 let handler = (function() {
2 const local = {};
3 return {
4 get: function(target, name, receiver) {
5 return Reflect.get((name in local) ? local : target, name, receiver);
6 },
7 set: function(target, name, value, receiver) {
8 return Reflect.set(local, name, value, receiver);
9 }

10 }
11 })();

Listing 3.3 Example of a proxy handler that implements a copy-on-write policy.
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Figure 3.2 Property access through an identity preserving membrane. The property access
through the wrapper proxyA.x returns a wrapper for targetA.x. The property access proxyA.y
returns the same wrapper as proxyB.z.

The handler forwards the access to its target object only if the property is not locally present.
Thus, reading a property from the proxy may return a value different than reading the
property from the target.

3.2 Membranes

A membrane is a regulated communication channel between an object and the rest of the
program. It ensures that all objects reachable from an object behind the membrane are
also behind the membrane. Figure 3.2 shows a membrane (dashed line) around target
implemented by the wrapper proxy. Each target object is represented by a wrapper object
(dotted line) outside the membrane and each property access through a wrapper (e.g., proxyA
.x) returns a wrapper on demand. Therefore, after installing the membrane, no new direct
references to target objects behind the membrane become available.

An identity preserving membrane is a membrane that furthermore guarantees that no
target object has more than one proxy. Thus, proxy identity outside the membrane reflects
target object identity inside. For example, if targetA.x.z and targetA.y refer to the same
object, i.e. targetA.x.z===targetA.y, then also proxyA.x.z and proxyA.y refer to the same
wrapper object with proxyA.x.z===proxyA.y.

Both kinds of membranes can be implemented with JavaScript proxies. Maps associate
target objects with their corresponding proxy objects. This mechanism may be used to
revoke all references to an object network at once [20, 81] or to enforce write protection on
the objects behind the membrane [64].

3.3 Notes

The implementation of TreatJS relies on JavaScript proxies to enforce contracts on functions
and objects. Function and object contracts are delayed contracts (cf. Section 4.3.1) as they
must stay with the value until the value is used. In this case, the target value gets packed in
a proxy along with the given contract and the proxy applies the contract in all contexts of
use.

Using proxy objects is the common way to implement delayed contract monitoring.
Proxies implement contracts in Racket’s contract framework [45, Chapter 7], in Disney’s
JavaScript contract system Contracts.js [30], and in JSConTest2 for JavaScript [64].
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4 A TreatJS Primer

Use and meaning of contracts have a long tradition coinciding with different intuitions and
different application scenarios of developers. We begin this part with a series of examples
that explain how contracts are written and that illustrates the basic principles underlying
design and implementation of our contract system.

TreatJS is a language-embedded, higher-order contract system for JavaScript [33], which
enforces contacts by runtime monitoring. It supports all the standard features of existing
contemporary contract systems in combination with a set of novel features and features that
have not been implemented in this combination before. In particular, TreatJS provides the
following core features:

Embedded contract-language. TreatJS is implemented as a library and deployed as a lan-
guage extension. All aspects are written in JavaScript and accessible through a contract
API. Hence, a programmer need not learn new syntax to state contracts.

Predicates are functions. Predicates are specified by plain JavaScript functions. TreatJS
does not impose syntactic restrictions on predicates but expects them to terminate on all
inputs. Predicates use the full expressive power of JavaScript, i.e., they can access the
application state of a program (but they are not allowed to change it).

Contracts are projections. Contracts cannot interfere with the execution of a contract
abiding host program. To guarantee not to exert side-effects on the host program,
predicate code runs in a sandbox with fine-grained access control and with a configurable
degree of isolation. Adding a contract to a program does either return the same outcome
or it signals a contract violation.

Dynamic contract construction. Contract abstraction enables to construct and compose
contracts at runtime. A contract abstraction is a JavaScript function that comprises a
contract definition. Values can be passed to the abstraction and the abstraction returns
a contract. Contract abstraction is particularly important to build recursive contracts,
parameterized contracts, or stateful contracts.

Full interposition. Contracts are enforced uniformly in all contexts of use. TreatJS contracts
guarantee full interposition for the full JavaScript language [33] and for all code regardless
of its origin, including dynamically loaded scripts and code injected via eval. No source-
code transformation or change in the JavaScript runtime system is required.

A small core API provides a set of essential core contracts in isolation. Core contracts avoid
JavaScript specialties where possible. A convenience API on top of the core API enables to
state more complex and convenient contracts. All contracts are first-class values that can be
stored and further composed. They are dormant until they are asserted to a value.

4.1 Base Contracts

The base contract (aka flat contract) is the fundamental building block of all other contracts.
It is built from a predicate on a single argument and asserting it to a value applies the
predicate to that value.
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1 let typeBoolean = Contract.Base(function(subject) {
2 return ((typeof subject) === "boolean");
3 },"typeBoolean");
4 let typeString = Contract.Base(function(subject) {
5 return ((typeof subject) === "string");
6 },"typeString");
7 let typeFunction = Contract.Base(function(subject) {
8 return ((typeof subject) === "function");
9 },"typeFunction");

10 let Any = Contract.Base(function(subject) {
11 return true;
12 },"Any");

Listing 4.4 Some utility contracts.

In TreatJS, predicates are defined by plain JavaScript functions because any return value
has an inherent boolean interpretation generally known as truthy or falsy1. A predicate holds
on a value if applying the function to the value evaluates to a truthy value.

For example, the following function checks if its argument is of type number.
1 function isNumber (subject) {
2 return ((typeof subject) === "number");
3 }

Listing 4.1 Example of a predicate function.

To create a base contract from such a function, we apply the appropriate constructor to it.
1 let typeNumber = Contract.Base(isNumber, "typeNumber");

Listing 4.2 Construction of a base contract.

The second argument passed to the constructor is an optional name for later user in error
messages. Here, Contract is a wrapper object that encapsulates all constructors for TreatJS
contracts. It also contains an assert function that attaches a contract to a subject value.
Assigning a base contract applies the predicate to that value.

We call a base contract immediate because it evaluates immediately when asserted to a
value. Customarily, assert returns the original value until it observes a contract violation. A
failing predicate signals a violation blaming the subject value for not fulfilling the predicate.
A base contract will never blame its context, which is the code that uses the subject.

In the following example, we first assert typeNumber to a number which returns the number
value itself, whereas the second assertion throws a contract violation blaming the string value
"a" for violating the typeNumber contract.

1 Contract.assert(1, typeNumber); // accepted, returns 1
2 Contract.assert("a", typeNumber); // violation, blame the subject "a"

Listing 4.3 Blame assignment of a base contract.

Listing 4.4 defines some base contracts for later use. Like typeNumber, the contract typeBoolean
, typeString, and typeFunction check their argument to a boolean, string or function value,
respectively. The Any contract accepts any value.

1 The following values are falsy: false, 0 (zero), "" (empty string), undefined, and NaN. All other
values truthy.
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4.2 Contract Constructors

The contract constructor is the second fundamental building block of our contract system. It
is for building contract abstractions which are used to build stateful contracts, dependent
contracts, parameterized contracts, and recursive contracts. The contract constructor is not
a contract per se, but when applied to some values it reduces to a contract.

Contract constructors are particularly important because, by default, base contracts
(predicates) cannot access values define outside it own scope, except the subject value.
Contract constructors make eternal values available inside of predicate code (cf. Section 4.5).

Like a base contract, it takes a JavaScript function and an optional name as an argument.
Unlike a base contract, the function maps zero or more parameters to a contract. The function
body may contain contract definitions and it has to return a contract. Each contract defined
inside shares the local variables and parameters visible in the function’s scope. The second
argument passed to the constructor is an optional name for later user in error messages.

For example, the contract constructor TypeOf builds a base contract from a specific type.
1 let TypeOf = Contract.Constructor(function(type) {
2 return Contract.Base(function(value) {
3 return ((typeof value) === type);
4 }, ‘TypeOf ${type}‘);
5 }, "TypeOf");

Listing 4.5 Construction of a contract constructor.

To obtain a contract from a constructor we apply the constructor to argument values. The
constructor can be used as a normal JavaScript function. For example, to create a contract
that checks for number values we apply the constructor to the type name "number".

1 let typeNumber2 = TypeOf("number");

Listing 4.6 Obtain a contract from a contract constructor.

This constructor provides an alternative construction of the type-contracts in Listing 4.4.
Instead of writing similar base contracts, the parameterized constructor can be used to
construct different versions of the same base contract.

Apart from building parameterized constructors, contract constructors are particularly
important to make values available inside of a predicate. By default, predicates are not
able to access values defined outside of the predicates scope. This restriction prohibits the
formation of some useful contracts.

For example, the instanceOfArray contract needs to access the global Array object to check
if its argument is an instance of Array. Without giving a concrete permission, instanceOfArray
would not be able to access the Array object.

1 let InstanceOf = Contract.Constructor(function(constructor) {
2 return Contract.Base(function(object) {
3 return (object instanceof constructor);
4 }, ‘InstanceOf ${constructor.name}‘);
5 }, "InstanceOf");
6 let instanceOfArray = InstanceOf(Array);

Listing 4.7 Definition of the InstanceOf constructor.

Listing 4.8 shows some utility constructors for later use. Constructor GreaterThan returns
a base contract that checks if a value is greater than a specific target value. Constructor
Between returns a base contract that checks if a value is in a certain range, and constructor
Length returns a base contract that checks the length property of an object.
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1 let GreaterThan = Contract.Constructor(function(value) {
2 return Contract.Base(function(subject) {
3 return (subject < value);
4 }, ‘GreaterThan ${value}‘);
5 }, "GreaterThan");
6 let Between = Contract.Constructor(function(min, max) {
7 return Contract.Base(function(subject) {
8 return (min <= subject) && (subject <= max);
9 }, ‘Between ${min} and ${max}‘);

10 }, "Between");
11 let Length = Contract.Constructor(function(length) {
12 return Contract.Base(function(subject) {
13 return (subject.length === length);
14 }, ‘Length ${length}‘)
15 }, "Length");

Listing 4.8 Some utility constructors.

1 let Even = Contract.Constructor(function(Math) {
2 return Contract.Base(function(subject) {
3 return (Math.abs(subject) % 2 === 0);
4 }, ‘Even‘);
5 }, "Even")(Math);
6 let Odd = Contract.Constructor(function(Math) {
7 return Contract.Base(function(subject) {
8 return (Math.abs(subject) % 2 === 1);
9 }, ‘Odd‘);

10 }, "Odd")(Math);

Listing 4.9 Some utility contracts (cont’d).
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Furthermore, Listing 4.9 shows some utility contracts built from contract constructors.
Contract Even checks for even numbers and contract Odd checks for odd numbers, respectively.
Both base contracts use the abs function from the global Math object to obtain the absolute
value of a given subject. The constructor makes Math available inside of the predicates.

4.3 Higher-Order Contracts

The base contracts in Section 4.1 and Section 4.2 specify flat statements on primitive values
that may be true or false depending on the subject values. Even though straightforward
assertions of base contracts may also test properties on functions and objects, they are not
expressive enough to state higher-order properties of functions and objects that cannot be
checked immediately. For example, a contract should be able to express that a function plus
maps two number values to a number value or that the access to the length property of an
array object always returns a number value. Hence, higher-order contracts are needed to
address first-class functions and other advanced abstractions.

To this end, TreatJS provides several kinds of higher-order contracts. In general, a
higher-order contract is a contract that

takes one or more contracts for the domain of an operation and that
returns a contract for the range of an operation.

4.3.1 Function Contracts

Following Findler and Felleisen’s work on contracts for higher-order functions [41], a function
contract is built from zero or more contracts for the domain of a function (one contract per
argument) and one contract for the range (return) of a function.

We call a function contract delayed because asserting it to a value does not immediately
signal a violation. Asserting the function contract amounts to asserting the domain contracts
to the argument values and asserting the range contract to the return value of each call. A
function contract applied to a non-function value will never signal a contract violation.

For example, consider the function plus which first checks if both arguments are greater
than 0 and second, depending on the result of this test, it either applies JavaScript’s native
addition operator + to its arguments or it returns a string message.

1 function plus(x, y) {
2 return (x>0 && y>0) ? (x + y) : "Error";
3 }

Listing 4.10 Definition of function plus.

As a running example we develop several contracts for plus. Our first contract restricts input
and output to values of type "number".

1 Contract.Function([typeNumber, typeNumber], typeNumber);

Listing 4.11 Construction of a function contract.

Contract.Function is a constructor for function contracts. Its first argument is an array that
maps an argument index (starting from zero) to a contract, whereas the second argument is
a contract for the return of a function.

To assert a function contract, Contract.assert wraps the subject value (in this case
function plus) in a special contract proxy that mediates all uses of the wrapped function. For
delayed contracts, Contract.assert does not return the subject value itself, but it returns a
value that behaves identical to the subject value, until it observes a contract violation.
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1 let plusNumber = Contract.assert(function plus(x, y) {
2 return (x>0 && y>0) ? (x + y) : "Error";
3 }, Contract.Function([typeNumber, typeNumber], typeNumber));

Listing 4.12 Assertion of a function contract.

So, plusNumber accepts any argument that satisfies typeNumber and promises to return a value
that satisfies typeNumber. Calling plusNumber with an argument that violates its contract,
then the function contract throws a contract violation blaming the context (the caller of a
function) for providing the wrong kind of argument. In case that all arguments are ok, but
the return value does not satisfy its contract, then the function contract throws a contract
violation blaming the subject (the function itself) for returning a wrong value. The following
example demonstrates blame assignment of a function contract.

1 plusNumber(1,1); // accepted, returns 2
2 plusNumber(0,1); // violation, blame the subject
3 plusNumber("a","b"); // violation, blame the context

Listing 4.13 Blame assignment of a function contract.

This example also demonstrates another particularity of contracts. A contract deems to be
satisfied until it is violated. Even though we know that plus does not satisfy its contract, no
blame is allocated until plus is used with a number less than or equal to 0.

Apart from having base contracts on the domain and range of a function, higher-order
function contracts are also possible and can be defined in the same way. For example, a
function addOne, which takes a plus function and a single number value as an argument, may
be specified by the following contract.

1 let addOneNumber = Contract.assert(function addOne(plus, z) {
2 return plus(z, 1);
3 }, Contract.Function([Contract.Function([typeNumber, typeNumber], typeNumber)),

typeNumber], typeNumber));

Listing 4.14 Nesting of function contracts.

Higher-order function contracts open up new ways to violate a contract. For example,
function addOne may call plus with a non-number value.

In general, the context of a function (the caller) is responsible for calling the function with
arguments that satisfy the domain specification of a function, and it has to use the function’s
return according to its specification. Likewise, the subject (the function) is responsible for
using the argument values according to their specification and to return a value that satisfied
the range specification.

1 addOneNumber(plus, 1); // accepted, returns 2
2 addOneNumber(plus, 0); // violation, blame the context

Listing 4.15 Blame assignment of a higher-order function contract.

The second call of addOneNumber throws a contract violation blaming the context of addOneNumber.
This is because the context did not call addOneNumber with a plus function that satisfies
Contract.Function([typeNumber, typeNumber], typeNumber).

To demonstrate subject blame, we use a slightly different version of addOne which calls
plus with its own argument z and the string value "1".

1 let addOneBroken = Contract.assert(function addOne(plus, z) {
2 return plus(z, "1");
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3 }, Contract.Function([Contract.Function([typeNumber, typeNumber], typeNumber),
typeNumber], typeNumber));

4 addOneBroken(plus, 1); // violation, blame the subject

Listing 4.16 Blame assignment of a higher-order function contract (cont’d).

Before concluding this section, it is important to mention that all examples demonstrate
a convenient construction of a function contract. In JavaScript, functions do not have a
fixed arity and arguments are passed to a function in an array-like arguments object. Thus,
Contract.Function implicitly creates an object contract (cf. Section 4.3.2) with n contracts
for the first n arguments from that array given as the first argument. Internally, the core
function contract applies the object contract to the arguments array before it is passed to
the function.

However, the core function contract accepts any contract on its domain. So, for example,
another function contract to plus may check that the function is called with exactly two
arguments, as the following example demonstrates.

1 let plusTwoArgs = Contract.assert(function plus(x, y) {
2 return (x>0 && y>0) ? (x + y) : "Error";
3 }, Contract.Function(Length(2), Any));

Listing 4.17 Using the core function contract.

Here, the base contract from Length(2) is directly applied to the arguments array. Calling
plusTwoArgs with more or less than two arguments will throw a contract violation blaming
the context for providing the wrong number of arguments.

4.3.2 Object Contracts

An object contract is a simple key/contract map. It is defined by a mapping from key values
(which are either property names, array indices, or symbols) to contracts.

Like a function contract, an object contract is delayed. All contracts in the mapping are
dormant until the associated property is addressed by a property read or property write
operation. When reading a property, the contract gets asserted to the accessed value before
it is given to the context, whereas writing a property asserts the contract to the new value.

The following example demonstrates the construction of an object contract that indicates
that the length property of an object has to be a value of type "number". The constructor
Contract.Object takes an enumerable JavaScript object (either an array or a normal object)
that maps key values to contracts.

1 Contract.Object({length:typeNumber});

Listing 4.18 Construction of an object contract.

Analog to type systems, the object contract is satisfied by all objects that possess a field
length containing a number value. Thus, it is safe to read length. However, there might
be other, unspecified, fields beside length. Reading an unspecified property needs further
assumptions about the underlying operational semantics of the programming language. In
particular, there are two alternatives:

Access to a non-existing property leads to a runtime error.
Access to a non-existing property does not lead to a runtime error.

While traditional record calculi assume the first alternative, the latter one might be more
sensible for JavaScript as reading an undefined property always returns undefined instead of
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raising a runtime error. JavaScript developers frequently access undefined properties to test
for non-existing fields. Furthermore, the existence of fields may change during execution.

TreatJS object contracts enable both possibilities. By default, an object contract is weak,
i.e., it does not restrict properties that are not mentioned in the contract. However, a special
boolean flag given to constructor creates a strict object contract that throws a contract
violation blaming the context when accessing a non-existing property.

1 Contract.Object({length:typeNumber}, true);

Listing 4.19 Construction of a strict object contract.

For now, we focus only on weak object contracts. One can argue that the weak object
contract is a special kind of a strict object contract that has an implicit Any contract in force
for all properties not mentioned by the contract.

Blame assignment for object contracts is inspired by Reynold’s approach on using built-in
function interfaces to access reference cells [91]. Property reads and property writes are
represented by internal getter and setter functions, both of which apply a function contract
with the property’s contract, but on different positions. The getter function of a property x
has the form x : > → C, whereas the setter function asserts x : C → >. Here, → indicates a
function contract, C is the property’s contract, and > is a contract that accepts any value.

Reading a property that violates the associated contract throws a subject blame, blaming
the object for returning a value that does not fulfill its specification. However, if the context
assigns a value that does not fulfill its specification, then the context gets blamed because
the property contract is on the domain of the function contract. Asserting an object contract
to a non-object value will never signal a violation.

The following example demonstrates blame assignment for an object contract.

1 let array = Contract.assert({length:"1"}, Contract.Object({length:typeNumber});
2 array.length; // violation, blame the subject
3 array.length = "1"; // violation, blame the context

Listing 4.20 Blame assignment for an object contract.

Apart from base contracts, object contracts may also contain any other contract. For example,
a function property might be contracted with a function contract.

However, this leads to a more complex blame assignment as the responsibility rests with
the context that assigns a function property and with the context that uses the function
property. To demonstrate this, the following object contract specifies that the plus method
of the Arithmetic object has to satisfy a certain function contract.

1 let Arithmetic = Contract.assert({/* some object */}, Contract.Object({
2 plus:Contract.Function([typeNumber, typeNumber], typeNumber)
3 });

Listing 4.21 Construction of an object contract (cont’d).

Now, let’s assign the plus function from Section 4.3.1 to the Arithmetic object.

1 Arithmetic.plus = function plus(x, y) {
2 return (x>0 && y>0) ? (x + y) : "Error";
3 }

Listing 4.22 Assigning a function property.

Assigning a function value to plus asserts the function contract to that value. However, a
function contract is a delayed contract, so that it is dormant until the function is used in
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an application. Now, when reading the function property, the object contract asserts the
function contract one more time.

This double-assertion is required because the first contract is related to the context that
writes the property, whereas the second contract is related to the context using the function.
The following example demonstrates the blame assignment of such a method.

1 Arithmetic.plus("a", "a") // violation, blames the context
2 Arithmetic.plus(0, 0) // violation, blames the context

Listing 4.23 Blame assignment for an object contracts (cont’d).

In both cases, we blame the context for violating the object contract. The first one is because
the current context calls the plus function with arguments values violating the contract on
plus, whereas the second blame is because the context previously assigned a malicious plus
function which did not satisfy the object contract.
As the last example, an object contract might also be the domain contract of a function
contract, which is the proper way of writing a function contract. The following code snippet
shows an equivalent way of writing a function contract for function plus from Section 4.3.1

1 let plusNumber = Contract.assert(plus, Contract.Function(Contract.Object([
typeNumber, typeNumber]), typeBoolean));

Listing 4.24 Construction of a function contract using an object contract.

4.3.3 Dependent Contracts

A dependent contract is a special function contact where the range contract depends on the
function arguments. In TreatJS, dependent contracts are created using contract constructors
that are invoked with the caller’s arguments. The constructor binds the arguments values
and returns a contract for the range of that function.

The following example demonstrates the construction of a dependent contract that
specifies that a function sort has to return an array of the same length as its input array.
The constructor Contract.Dependent can either be called with a single JavaScript function or
with a contract constructor. Calling the constructor with function internally converts the
function to a contract constructor.

1 let sort = Contract.assert(function sort(input, compareFunction) {
2 /* not specified in detail */
3 }, Contract.Dependent(function(input, compareFunction) {
4 return Contract.Base(function(output) {
5 return (input.length === output.length);
6 });
7 });

Listing 4.25 Construction of a dependent contract.

Dependent contracts in TreatJS do not check the domain of a function, as done in other
contract systems. However, TreatJS can intersect the dependent contract with another
function contract that checks the domain. Section 4.4 demonstrates such a contract.

4.3.4 Method Contracts

The method contract is another special function contract. In JavaScript, function application
usually takes two arguments: a this value that binds an object for method calls and an
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array-like object specifying the arguments of that call. Thus, TreatJS’s convenience API
provides a special method contract that includes a contract specification for this.

For example, the sort function of the built-in Array.prototype object might be specified
by a method contract which requires that sort must be called as a method of an object that
is an instance of Array. The method contract further specifies that the method’s argument
must be a function and that the method has to return an array.

1 Array.prototype.sort = Contract.assert(function sort(compareFunction) {
2 /* not specified in detail */
3 }, Contract.Method(InstanceOf(Array), [InstanceOf(Function)], InstanceOf(Array));

Listing 4.26 Construction of a method contract.

Like a function contract, the method contract constructor implicitly converts all arrays that
were given as an argument to an object contract. All other contracts apply directly to the
corresponding values.

4.4 Combination of Contracts

Beyond base, function, object, dependent, and method contracts, TreatJS provides built-in
constructors for intersection and union contracts. Both are again contracts that can be
further composed or contained in another contract.

Intersection and union contracts are inspired by the corresponding operators in type
theory [19]. A value has an intersection type τ1 ∩ τ2 if it has both types τ1 and τ2.
Consequently, the context of that value can choose to use it either as a value of type τ1 or τ2.
Intersection types are particularly important to model overloading and multiple inheritances
of values. The dual of intersection types, union types [7], model the domain of overloaded
types. Contrary to intersection types, a value has a union type τ1 ∪ τ2 if it has type τ1 or τ2,
whereas the context must be able to deal with both types, τ1 and τ2.

4.4.1 Intersection Contracts

In type theory, if a value has two types, then we can assign it an intersection type [19].
TreatJS provides a corresponding constructor for intersection contracts.

For base contracts, the intersection nicely coincides with the conjunction of the predicates
as the subject value needs to satisfy both contracts. For example, the intersection of the
base contracts Positive and Even tests for positive and even values.

1 let PositiveEven = Contract.Intersection(Positive, Even);
2 Contract.assert(0, PositiveEven); // violation, blame the subject
3 Contract.assert(1, PositiveEven); // violation, blame the subject
4 Contract.assert(2, PositiveEven); // accepted

Listing 4.27 Construction of an intersection contract.

The constructor Contract.Intersection builds an intersection contract from its arguments.
The intersection contract enables to specify independent properties in different base contracts
(predicate) and to use intersection to combine various base contracts to a specific contract.
Obviously, it is also possible to write an equivalent “fat” predicate2 that checks for positive
and even values.

2 A fat predicate is a predicate that tests more than one property.
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1 let PositiveEven = Contract.Constructor(function(Math) {
2 return Contract.Base(function(subject) {
3 return ((Math.abs(subject) % 2 === 0) && (subject > 0));
4 }, ‘Positive and Even‘);
5 }, "Positive and Even")(Math);

Listing 4.28 Construction of a base contract with a fat predicate.

Intersections for base contracts are not really existing as they can be pushed into the
predicates. However, separate contracts improve modularity and reusability of contracts and
merging intersections did not work for intersections of function or object contracts.

To demonstrate intersections of function contracts, let’s recap function plusNumber from
Section 4.3.1. Its contract restricts the arguments to number values and promises to return
a number. However, JavaScript’s plus operator + is overloaded and works for strings and
numbers. It either produces the sum of numeric operands or it concatenates strings. Thus,
function plus works for strings, too. In TreatJS, we can assign it an intersection contract
that enables both inputs.

1 let plus = Contract.assert( function plus(x, y) {
2 return (x>0 && y>0) ? (x + y) : "Error";
3 }, Contract.Intersection(
4 Contract.Function([typeNumber, typeNumber], typeNumber),
5 Contract.Function([typeString, typeString], typeString)
6 ));

Listing 4.29 Construction of an intersection contract (cont’d).

Use and meaning of an intersection contract nicely coincide with the meaning of an intersection
type. The context can choose to use plus either with arguments that satisfy typeNumber
or typeString, i.e., the arguments must satisfy the union (cf. Section 4.4.1) of the domain
contract. The context of an intersection gets blamed if the arguments fail both domain
contracts, [typeNumber, typeNumber] and [typeString, typeString]. Contrarily, the subject
(the function plus) needs to deal with both inputs. Depending on its input it must either return
a string or a number value. It gets blamed if it does not satisfy the range contract of each
function contract whose domain contract is satisfied. The following example demonstrates
the blame assignment.

1 plus(1, 1); // accepted
2 plus("a", "a") // accepted
3 plus(true, true); // violation, blame the context
4 plus(1, "a"); // violation, blame the context
5 plus(0, 0); // violation, blame the subject

Listing 4.30 Blame assignment of an intersection contract.

Next, let’s take a closer look into intersection contracts. In the previous example, both
domain contracts are disjoint: no value satisfies typeNumber and typeString at the same time.
So, the subject must either return a number or a string, depending on its input.

However, the intersection indicates that the subject is able to deal with both contracts.
This means, if an argument satisfies both domain contracts, then the subject must return a
value that also satisfies both range contracts. The following example demonstrates this.

1 let addOne = Contract.assert(function addOne(x) {
2 return (x+1);
3 }, Contract.Intersection(
4 Contract.Function([Even], Even),



28 A TreatJS Primer

5 Contract.Function([Positive], Positive)
6 ));
7 plus(0); // violation, blame the subject
8 plus(1); // accepted
9 plus(-1); // violation, blame the context

10 plus(2); // violation, blame the subject

Listing 4.31 Blame assignment of an intersection contract (cont’d).

In TreatJS it is also possible to build the intersections of object contracts. However, the
intersection of object contracts might be confusing without further clarification. In TreatJS,
object contracts are either weak or strict (cf. Section 4.3.2), i.e., they either allow access to
not specified properties, or they don’t. Strict object contracts throw a contract violation
when reading or writing to an unspecified property, whereas weak object contracts have an
implicit Any contract for all undefined property in force.

To demonstrate this, let’s consider the following object specification.

1 let object = Contract.assert({x:true, y:true}, Contract.Intersection(
2 Contract.Object({x:typeNumber}),
3 Contract.Object({y:typeNumber})
4 ));

Listing 4.32 Intersection of two object contracts.

As before, the subject must satisfy both contracts, whereas the context can choose to satisfy
either of them. However, the blame behavior seems to be confusing at first glance.

1 object.x // violation, blame the subject
2 object.x = true // accepted

Listing 4.33 Blame assignment of an intersection of weak object contracts.

Reading object.x throws a contract violation blaming the subject because the subject must
satisfy both contracts; this is typeNumber from the left contract and Any from the right
contract. In this example, there is no difference between weak and strict object contracts
when reading a property. The subject needs to satisfy all property contracts if there are any.

Contrary to our expectations, writing object.x = true does not throw a contract violation.
This is because the context can choose either to satisfy typeNumber from the left or Any from
the right contract. However, a similar intersection with strict object contracts would report
a contract violation blaming the context because of both, Contract.Object({x:typeNumber})
and Contract.Object({y:typeBoolean}), report a context failure.

In this example, the intersection of two strict object contracts is equivalent to a single object
contract Contract.Object({x:typeNumber, y:typeBoolean}) which specifies both properties.
However, the intersection enables to have more than one contract per property, which is not
possible with a single object contract.

1 let object = Contract.assert({x:1, y:1}, Contract.Intersection(
2 Contract.Object({x:typeNumber}),
3 Contract.Object({x:Positive})
4 ));

Listing 4.34 Intersection of two object contracts (cont’d).

Furthermore, consider the intersection of two object contracts that specify a method.

1 let object = Contract.assert({/* some object */}, Contract.Intersection(
2 Contract.Object({f:Contract.Function([typeNumber], typeNumber)}),
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3 Contract.Object({g:Contract.Function([typeBoolean], typeBoolean)})
4 ));

Listing 4.35 Intersection of two object contracts (cont’d).

When evaluating object.f(1) we get a subject failure if object.f does not return something of
type number. But, when evaluating object.f(true), then we get no blame because there is no
contract violation from Contract.Object({g:Contract.Function([typeBoolean], typeBoolean
)}). Unlike the weak object contract, a similar intersection of strict object contracts would
throw a contract violation blaming the context.

Apart from intersecting contracts of the same type, TreatJS also enables arbitrary
combinations of contract. For example the intersection of a flat contract with a function
contract. One prominent use of this is the construction of a real function contract that can
only be applied to function values.

1 let RealFunction = Contract.Constructor(function(functionContract) {
2 return Contract.Intersection(typeFunction, functionContract);
3 }, functionContract.toString());

Listing 4.36 Construction of a real function contract.

The left-hand side of the intersection is a base contract that checks if its subject value is a
function. A base contract is an immediate contract that is checked right away when asserted
to a value, whereas the function contract remains on the function until the function is used.
However, if the subject value is not a function, then the base contract immediately reports a
subject violation, which in turn leads to a subject violation of the whole intersection.

At this point, we have to mention that, even if TreatJS enables unrestricted combinations
of contract, it is not possible to combine contracts arbitrarily. TreatJS requires its core
contracts to be in a canonical form to achieve the correct blame behavior and to improve
the efficiency of contract monitoring. Thus, it restricts intersection contracts to intersections
of an immediate contact and any other contract or to an intersection of delayed contracts3.
However, TreatJS provides a special constructor function Contract.Intersection.from that
allows building intersections of arbitrary contracts. Contract.Intersection.from normalizes
contracts and returns a canonical intersection contract equivalent to the given intersection.

Normalization pulls unions out of intersections and separates immediate contracts from
the delayed contracts of an intersection, such that the immediate contracts can be evaluated
right away when asserted to a value, whereas the delayed contracts remain on the subject
value until the subject is used. Section 5.4.3 provides more details on this.

4.4.2 Union Contracts

Union contracts, the dual of intersection contracts, are also used for connections between
contracts. Union contracts model the domain of overloaded values, and in some situations,
there is an equivalence that enables to rephrase an intersection contract with a union contract
or vice versa. Again, there is a connection to union types.

For example, consider the intersection contract on a compare function that either compares
strings or numbers and that promises to always returns a boolean.

1 let compare = Contract.assert(function compare(x, y) {

3 The convenience API also provides an intersection contract of immediate contracts, but this contract is
not necessary and only available to improve usability.
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2 return (x > y);
3 }, Contract.Intersection(
4 Contract.Function([typeNumber, typeNumber], typeBoolean),
5 Contract.Function([typeString, typeString], typeBoolean)
6 ));

Listing 4.37 Specification of function compare.

Exploiting the well-known type equivalence (τ1 → τ3) ∩ (τ2 → τ3) ≡ (τ1 ∪ τ2)→ τ3 [7], an
equivalent contract can be written as follows.

1 let compare = Contract.assert(function compare(x, y) {
2 return (x > y);
3 }, Contract.Function(
4 Contract.Union(
5 Contract.Object([typeNumber, typeNumber]),
6 Contract.Object([typeString, typeString])
7 ), typeBoolean
8 ));

Listing 4.38 Alternative specification of function compare.

Here, Contract.Union builds the union of two contracts. As before, TreatJS enables to build
the union of arbitrary contract and does not restrict the union to contracts of the same type.
Furthermore, all top-level union contracts need not be normalized.

Just like intersections, the union of two base contracts can be pulled down to a disjunction
on the enclosed predicates. The subject can choose to satisfy either of them.

1 let PositiveOrOdd = Contract.Union(Positive, Odd);
2 Contract.assert(0, PositiveOrOdd); // violation, blame the subject
3 Contract.assert(1, PositiveOrOdd); // accepted
4 Contract.assert(2, PositiveOrOdd); // accepted

Listing 4.39 Union on base contracts.

But union contracts are also applicable to function and object contracts. A function satisfies
the union of two function contracts if it satisfies either of them, whereas the context of a union
must deal with both contracts. The following example demonstrates its blame behavior.

1 let mod3 = Contract.assert(function mod3(x) {
2 return (x % 3);
3 }, Contract.Union(
4 Contract.Function([Even], Even),
5 Contract.Function([Positive], Positive)
6 ));
7 mod3(4); // accepted, returns 1
8 mod3(1); // violation, blame the context
9 mod3(6); // violation, blame the subject

Listing 4.40 Blame assignment of a union contract.

In line 7 the context calls mod3 with a positive and even number and the subject returns a
positive odd number. The contract is satisfied as the context satisfies both contracts and the
subject can choose to fulfill either Even or Positive.

In the second call the context gets blamed because it fails to satisfy both domain contracts,
Even and Positive.

In the last use, the context calls mod3 with a positive and even number, but the subject
returns 0, an even but not a positive number. Even though the subject of a union can choose
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to fulfill either of both contracts, it is not allowed “flip” between both specifications. A
misbehaving function gets blamed on its first alternation. Here, mod3 decides to satisfy the
Contract.Function([Positive], Positive) contract. As in the last example, it attempts to
return an even, but not a positive number, TreatJS throws a contract violation, blaming the
subject for return an inappropriate value.

Finally, let’s look at the union of two object contracts. As an example we again consider
object {x:true, y:true} with the following specification.

1 let object = Contract.assert({x:true, y:true}, Contract.Union(
2 Contract.Object({x:typeNumber}),
3 Contract.Object({y:typeBoolean})
4 ));

Listing 4.41 Union of two object contracts.

To recap, this is a weak object contract, which allows reading of unspecified properties.
Like before, the subject can choose to satisfy either of both contracts (but it is not allowed

to alternate between both contracts), whereas the context must deal with both sides of the
union. So, reading object.x does not throw a contract violation. The contract is satisfied
as the right side of the union does not restrict property x. However, if the subject decides
to satisfy the right side, subsequent read access to property y throws a contract violation
blaming the subject. The following code snippet demonstrates this behavior.

1 object.x; // accepted, returns true
2 object.y; // violation, blame the subject

Listing 4.42 Blame assignment of a union contract.

Furthermore, writing a property requires that all property contracts are satisfied.

1 object.x = true; // violation, blame the context

Listing 4.43 Blame assignment of an union contract (cont’d).

Writing object.x throws a contract violation as the context did not assign a number value.
For a strict object contract, every property read and property write would immediately

result in a contract violation. This is because both contracts specify different property names,
and reading an unspecified property immediately reports a context failure. As the context of
a union always has to satisfy both contracts, the union of two strict object contracts requires
that all readable and writeable properties are specified in both contracts.

Reading and writing a function property results in an equivalent behavior.

4.5 Sandboxing Contracts

In most existing contract systems a contract remains invisible until the contract monitor
observes a violation. This also includes that contracts and predicates do not influence the
normal program execution or write values that are also visible to the host application.

In TreatJS, predicates are specified by plain JavaScript functions, i.e., predicates use
the full expressive power of JavaScript and there are no syntactic restrictions on predicates.
However, the execution of a contract abiding host program should not be influenced by the
evaluation of a terminating predicate inside of a base contract. But, without any restrictions
predicate code might manipulate values outside the predicate’s scope or it might call a
side-effecting function.

To illustrate this issue we rephrase the typeNumber contract from Section 4.1.
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1 let maliciousTypeNumber = Contract.Base(function(subject) {
2 type = (typeof subject);
3 return (type === "number");
4 },"typeNumber");

Listing 4.44 Malicious implementation of typeNumber.

Here, a programmer first determines the type of the subject value and stores it in a variable
before it compares the type names. But, the programmer missed adding the let keyword
in front of the assignment in line 2. As the variable type might be defined in an enclosing
scope, the assertion of maliciousTypeNumber could overwrite a variable defined outside its
own scope. Thus, it might influence the normal program execution.

To prevent such unintended interference, TreatJS evaluates predicates in a sandbox with a
configurable degree of isolation. By default, the sandbox reopens the predicate’s closure and
removes all external binding of variables. It encapsulates the predicate in a membrane that
stops the evaluation if a predicate attempts to access variables defined outside the predicate’s
scope.

To demonstrate, the evaluation of maliciousTypeNumber stops and throws a sandbox
violation as soon as the predicate attempts to write type.

1 Contract.assert(1, maliciousTypeNumber); // violation, access forbidden

Listing 4.45 Causing a sandbox violation.

However, read-only access is safe, and many useful contracts require access to objects or
functions defined outside. For example, the instanceOfArray contract from Section 4.2
requires access to the global Array object to check if its subject is an instance of Array.
Without giving a concrete permission, the sandbox rejects any access to variables defined
outside the predicate’s scope.

To grant permission, TreatJS provides the contract constructors (cf. Section 4.2). The
contract constructor builds a contract abstraction. It consists of a function that maps a
number of parameters to a contract. As a predicate, this function is evaluated in the sandbox.
However, every contract (predicate) defined inside the constructor function shares the local
variables visible in the constructor’s scope. As every predicate defined inside of a constructor
function is guaranteed to be without ties to the outside world, no further sandbox is required.
Each value passed into the sandbox, either as a constructor argument or as a subject value,
is wrapped in an identity-preserving membrane (cf. Section 3.2) to mediate access to the
entire object structure.

In general, TreatJS provides three different safety levels. The most liberal level, none,
deactivates the sandbox and enables any interference of predicate code. The pure level
evaluates predicate code and constructor functions in a sandbox and wraps every value in a
membrane that prohibits write access but allows unrestricted read access, whereas the strict
level prevents any kind of access. Unfortunately, any read access to a JavaScript object might
be the call to a side-effecting getter function or the call of a side-effecting proxy trap. While
getter functions can be recognized, nested proxy traps always remain undetected. Thus, only
the strict level guarantees full noninterference as it restricts any access to the target object,
but it also prohibits some useful operations, for example, instanceof tests4.

4 In JavaScript, the instanceof test calls the [Symbol.hasInstance] method of a constructor function
to determines if a constructor recognizes an object as its instance. For example, a instanceof A is
equivalent to A[Symbol.hasInstance](a).
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The pure level, in contrast, enables read access but places several restrictions on it. First,
any return of a read must be wrapped in the membrane. Second, every function (this also
includes function properties and getter functions) must be evaluated in our sandbox. To this
end, the membrane mediates any function application of wrapped objects and evaluates the
function in our sandbox.

4.6 Lax, Picky, and Indy Semantics

TreatJS distinguishes three different Monitoring semantics: Lax, Picky, and Indy. The
general idea of these semantics are drawn from the literature [41, 10, 26], which introduces
different kinds of evaluation semantics to handle correctness and completeness of higher-order
dependent contracts. TreatJS provides a generalization of those semantics.

One ground rule of contract monitoring is that a contract abiding host program should
not be influenced by the introduction of contracts. But, what happens if a contract violates
another contract? Following this ground rule, contract violations in other contracts should be
ignored as they are not part of the host program. On the other hand, this makes it possible
to violate a contract without consequences: you only need to put the malicious execution in
a predicate of a base contract and to assert this base contract to some value.

In TreatJS, predicate evaluation takes place in a sandbox that prohibits side-effects on
the host program (which also includes thrown exceptions). However, this might enable that
a function is used against its specification without recognizing the violation. To overcome
this, different blame semantics define the blame behavior of contract violations in contracts.

To make this discussion concrete, consider the definition of function id.

1 let id = Contract.assert(function id(x) {
2 return x
3 }, Contract.Function([typeNumber], typeNumber));

Listing 4.46 Definition of function id.

Next, let’s consider the definition of a base contract idTest which tests function id.

1 let idTest = Contract.Base(function test(id) {
2 return id("a") === "a";
3 }, "ID Test");

Listing 4.47 Definition of base contract idTest.

The Lax semantics erases all contract monitors on values that pass the sandbox membrane.
This is correct because it guarantees that a well-behaved program never gets blamed for a
violation taking place in a predicate, but it is not complete as it swallows contract violations
in predicates and constructors. The following example demonstrates this behavior.

1 Contract.assert(id, idTest); // accepted

Listing 4.48 Blame assignment of Lax semantics.

The Picky semantics, in contrast, is complete but not correct. It preserves all contract
monitors on values, and it reports every violation, but it might wrongly blame the program
for violations that happen in predicate code. The following example demonstrates blame
behavior with picky semantics.

1 Contract.assert(id, idTest); // violation, blame the context

Listing 4.49 Blame assignment of Picky semantics.
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The Indy semantics, an extension of Picky, introduces a third player (the contract itself)
in addition to the existing players context and subject. Passing a value into the sandbox
reorganizes the monitor such that wrong uses of that value blame the ill-behaved contract,
whereas subject failures still blame the subject. The Indy semantics is correct and complete.
The following snippet demonstrates its outcome.

1 Contract.assert(id, idTest); // violation, blame the contract "ID Test"

Listing 4.50 Blame assignment of Indy semantics.

Furthermore, subject violations are also possible, as the following example demonstrates.

1 let addOne = Contract.assert(Contract.assert(function addOne(plus, z) {
2 return plus(z, 1);
3 }, Contract.Dependent(function(plus, z) {
4 return Contract.Base(function(subject) {
5 return plus(z, "a") === z + "a";
6 }, "Plus Test");
7 })), Contract.Function([Contract.Function([typeNumber, typeNumber], typeNumber),

typeNumber], typeNumber)));

Listing 4.51 Assertion of a function and a dependent contract.

Function addOne takes a plus function and a number value and applies function plus to its
second argument and the number value 1. The specification of addOne takes two contracts.
First, a dependent contract which creates a base contract for the return of function addOne,
and second a function contract that specifies domain and range of addOne.

When calling addOne with a plus function and a number value, the outermost contract
first applies Contract.Function([typeNumber], typeNumber) and typeNumber to addOne’s argu-
ments, before it passes the arguments to the dependent contract. As the contract on plus is
a delayed contract, it remains on the function when passing the function to the dependent
contract. More details on the evaluation order of contracts are given in Section 5.4.5.

It, therefore, follows that the base contract which is returned from the dependent contract
violates the contract plus by calling plus with values that do not satisfy the typeNumber
contract. However, the result of this violation depends again on the chosen blame semantics,
as the following code snippets demonstrate.

1 addOne(function plus(x, y) {
2 return (x + y);
3 }, 2) // accepted, returns 3

Listing 4.52 Blame assignment of Lax semantics (cont’d).

As before, the Lax semantics removes all contract monitors and does not report a contract
violation.

1 addOne(function plus(x, y) {
2 return (x + y);
3 }, 2) // violation, blame the subject

Listing 4.53 Blame assignment of Picky semantics (cont’d).

In sharp contrast to Lax, the Picky semantics reports a contract violation blaming the subject
value for using its arguments against its specification. Even though it is evident that is it
not the subject’s fault, the subject gets wrongly blamed for misconducts of its own contract.

1 addOne(function plus(x, y) {
2 return (x + y);
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3 }, 2) // violation, blame the contract "Plus Test"

Listing 4.54 Blame assignment of Indy semantics (cont’d).

Fortunately, the Indy semantics blames the base contract "Plus Test" for violating the
contract on plus. However, not every contract violation inside of a contract is in the
responsibility of the contract. Context and subject blames are still possible. For example,
when calling addOne with a misbehaving plus function.

1 let addOne = Contract.assert(function addOne(plus, z) {
2 return plus(z, 1);
3 }, Contract.Intersection(
4 Contract.Dependent(function(plus, z) {
5 return Contract.Base(function(subject) {
6 return subject == plus(z, 1);
7 }, "Plus Test");
8 }),
9 Contract.Function([Contract.Function([typeNumber], typeNumber), typeNumber],

typeNumber)
10 )
11 );
12 addOne(function plus(x, y) {
13 return "1";
14 }, 2) // violation, blame the context

Listing 4.55 Blame assignment of Indy semantics (cont’d).

Calling addOne with a faulty plus function that always returns a string value reports a
contract violation blaming the context as usual.

TreatJS uses Indy semantics by default, but any other blame semantics can be selected
when initializing TreatJS. More details about the blame semantics are given Section 5.5.

4.7 Compatibility of Contracts

Apart from different monitoring semantics (cf. Section 4.6) a compatibility test for contracts
on values that were passed to another contract (predicate) is needed. To demonstrate the
need for a compatibility test, let’s consider the intersection of a function contract and a
dependent contract, as shown in the following example.

1 let addOne = Contract.assert(function addOne(plus, z) {
2 return plus(z, 1);
3 }, Contract.Intersection(
4 Contract.Dependent(function(plus, z) {
5 return Contract.Base(function(subject) {
6 return plus(z, "1");
7 }, "Plus Test");
8 }),
9 Contract.Function([Contract.Function([typeNumber], typeNumber), typeNumber],

typeNumber)
10 )
11 );

Listing 4.56 Intersection of a function and a dependent contract.

As before, function addOne takes a plus function and a number value and applies function
plus to its second argument and the number value 1. Its specification is the intersection of a
dependent contract and a function contract.
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Viewed individually, addOne satisfies both contracts: the function contract and the depen-
dent contract. However, without any compatibility test, it will not satisfy the intersection
contract of both. This is because TreatJS sequentially unrolls the intersection contract from
left to right and when calling addOne it first applies the domain contract of the outermost
contract, which is the function contract in this case.

As the contract on plus is a delayed contract, it remains on the function value when
the value is passed to the dependent contract. As the contained predicate calls plus with
a non-number value, it will obviously violate the function contract on plus. However, this
function contract belongs to the other side of an intersection and should therefore not be in
force when evaluating the dependent contract.

Thus, TreatJS applies a compatibility test whenever a contracted value is used in another
contract. This compatibility test drops all contracts that semantically belong to a parallel
intersection or union of the same top-level assertion. It will not drop contracts of the same
side of an intersection or union and it will not remove contracts that arise another top-level
assertion. So, calling addOne will not throw a contract violation.

1 addOne(function plus(x, y) {
2 return (x+y);
3 }, 1); // accepted, return 1

Listing 4.57 Intersection of a function and a dependent contract (cont’d).

Obviously, when using the Lax monitoring semantics, a compatibility test is not required as
Lax always removes all contract monitors on values passed to another contract. However,
Picky and Indy require this compatibility test to make intersection and union symmetric and
to avoid a mutual influence of contracts in an intersection or union. More technical details
about the compatibility test are given in Section 5.6.

4.8 Convenience Contracts

In addition to the core contracts previously mentioned in this chapter, TreatJS provides a
Convenience API with contracts that build on TreatJS’s core contracts.

4.8.1 Invariant Contracts

Formally, an invariant is a condition which might be true or false during the execution of
a program. From a contract’s perspective, an invariant is some kind of delayed predicate
that is checked on every use of a contracted subject value. Invariants are especially useful to
enforce a particular property on an object during program execution.

To demonstrate this, let’s consider the definition of a binary tree root, as defined by Node
and Leaf elements in Listing 4.58. Each Node element consists of a value field, a left child,
and a right child, whereas a Leaf element only consists of a value field. Their height property
returns the height of the element in the binary tree.

1 let root = new Node(2, new Node(1, new Leaf(0), new Leaf(0)), new Leaf(0));

Listing 4.59 Definition of a binary tree.

Furthermore, consider the definition of base contract isBalanced which checks if a given node
is balanced.

1 let isBalanced = (Contract.Constructor(function(Node, Math) {
2 return Contract.Base(function isBalanced(node) {
3 if(node instanceof Node) {
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1 function Node (value, left, right) {
2 this.value = value;
3 this.left = left;
4 this.right = right;
5 }
6 Node.prototype = {
7 get height() {
8 return (Math.max(this.left.height,this.right.height)+1);
9 }

10 }
11 function Leaf(value) {
12 this.value = value;
13 }
14 Leaf.prototype = {
15 get height() {
16 return 0;
17 }
18 }

Listing 4.58 Implementation of a Node and Leaf element.

4 const {value, left, right} = node;
5 const lhs = left.height;
6 const rhs = right.height;
7 return isBalanced(left) && isBalanced(right) && (Math.abs(lhs - rhs) <= 1);
8 } else {
9 return true;

10 }
11 } ,"isBalanced");
12 }, "isBalanced"))(Node, Math);

Listing 4.60 Definition of the isBalanced contract.

The predicate recursively checks if the difference between the height of the left and the height
of the right node is smaller or equals to one. To check if the root is a balanced we simply
assert isBalanced to root, as the following example demonstrates.

1 let balanced_root = Contract.assert(root, isBalanced); // accepted, returns root

Listing 4.61 Assertion of the isBalanced contract.

Unfortunately, this check only applies once and all subsequent property updates to root
might unbalance the binary tree, as the following example demonstrates.

1 balanced_root.left = new Node(3, new Node(2, new Node(1, new Leaf(0), new Leaf(0)),
new Leaf(0)), new Leaf(0));

Listing 4.62 Unbalance a binary tree.

To overcome this, TreatJS enables to write an Invariant Contract, which is very similar to
a delayed base contract that checks the predicate after each operation on the contracted
subject value.

1 let BalancedNode = Contract.Invariant(isBalanced);

Listing 4.63 Definition of an invariant contract.
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Now, we can assert the BalancedNode invariant on root.

1 let balanced_root = Contract.assert(root, BalancedNode);

Listing 4.64 Assertion of an invariant contract.

The invariant is checked on every use of balanced_root. So, it throws a context violation if
we attempt to unbalance the binary tree like this:

1 let balanced_root.left = new Node(3, new Node(2, new Node(1, new Leaf(0), new Leaf
(0)), Leaf(0)), Leaf(0)); // violation, blame the context

Listing 4.65 Blame assignment of an invariant contract.

The invariant contract blames the context for violating the predicate during the program
execution. In general, invariant contracts will always blame the context for wrong uses.
However, there is an initial predicate check in front that checks the adherence of the invariant
at assertion time. This check will blame the subject value if it does not satisfy the invariant.

4.8.2 Recursive Contracts

A special feature of contract constructors is the possibility to build recursive contracts. In
general, a recursive contract is a contract that is defined in terms of itself.

To motivate the need for recursion in contracts, let’s recap the binary tree example from
Subsection 4.8.1. The BalancedNode invariant enforces the isBalanced predicate on root.
However, the invariant is only enforced on root directly, not on its children. So, it is still
possible to unbalance the binary tree by modifying one of root’s child nodes.

To overcome this issue, TreatJS enables to define a recursive contract that recursively
enforces the invariant on all child nodes. A recursive contract is build from a contract
constructor that is later invoked with the recursive contract and which makes the contact
available in another contract definition. Recursive contracts are closely related to recursive
data types. The following example demonstrates the notation of a recursive contract.

1 let BalancedTree = (Contract.Constructor(function(BalancedNode) {
2 return Contract.Recursive(function mu(self) {
3 return Contract.And.from(BalancedNode, Contract.Object({
4 value: typeNumber,
5 left: self,
6 right: self
7 }));
8 });
9 }, "BalancedTree"))(BalancedNode);

Listing 4.66 Definition of a recursive contract.

The outermost contract constructor is only to make BalancedNode available inside of the
sandbox. It returns the recursive contract, which is built from Contract.Recursive.

Contract.Recursive consumes another contract constructor5, which is later invoked with
the recursive contract itself. The given JavaScript function later returns a conjunction of
the BalancedNode invariant and an object contract with the recursive contract in place. The
object contract only implements the recursive walk-through, whereas the invariant checks
the property. The And contract simply conjuncts two contracts.

5 Here, Contract.Recursive implicitly converted the JavaScript function to contract constructor.
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1 let balanced_tree = Contract.assert(root, BalancedTree);

Listing 4.67 Assertion of a recursive contract.

Now, the invariant is enforced on all node elements. Whenever we access a node starting from
balanced_tree, the returned value is wrapped within the same contract as balanced_tree.
So, subsequent read or write operation to one of its children will check the invariant as well.

1 let balanced_tree.right.left = new Node(3, new Node(2, new Node(1, new Leaf(0), new
Leaf(0)), Leaf(0)), Leaf(0)); // violation, blame the context

Listing 4.68 Blame assignment of a recursive contract.





5 Contracts and Contract Monitoring

This chapter explains how contract monitoring in TreatJS works and how TreatJS determines
the correct blame for a contract by the outcome of its constituents.

To this end, it defines λCON , an untyped call-by-value lambda calculus with contracts
that serves as a core calculus for contract monitoring. It first introduces the base calculus
λJ , and then it proceeds to describe contracts and their semantics for the base calculus.
Finally, it gives the semantics of contract assertion and blame propagation.

5.1 The Base Language λJ

This section introduces λJ , an untyped call-by-value lambda calculus with objects and
object-proxies that serves as a core calculus for JavaScript. It defines its syntax and describes
its semantics formally. The calculus is inspired by core calculi from the literature [68, 64, 66,
50, 54].

Figure 5.1 defines the syntax of λJ . A λJ expression e is either a constant, a variable, a
primitive operation, a lambda abstraction, an application, a creation of an empty object,
a property read, or a property assignment. Variables x, y, z are drawn from denumerable
sets of symbols and constants c include JavaScript’s primitive values like numbers, strings,
booleans, as well as undefined and null.

To define evaluation, Figure 5.2 defines the semantic domains of λJ . Their main
component is a store σ that maps a location l to an object o, which is either a native object
consisting of a dictionary d and a prototype value v, or a function object consisting of a
lambda expression λx.e and an environment ρ that binds the free variables. A dictionary d
models the properties of an object. It maps a constant c to a value v. An environment ρ
maps a variable x to a value v. A value v is either a constant c or a location l.

The syntax of λJ does not make proxies available to the user but offers an internal
method to wrap objects. Objects and proxy-objects are always modeled by their meta-data.

5.2 Contracts and Contracted λJ

Figure 5.3 defines the syntax of λCON as an extension of λJ . It first introduces constructs
for contracts in general, and second, it adds new terms specific to contract monitoring. For
simplicity, we focus only on constructors for TreatJS core contracts, but other contracts can
be added in the same way or stated in terms of a core contract.

The only new source expressions in λCON are a contract assertion e@`f and a contract
definition E . The contract assertion e@`f evaluates an expression f to a contract C and
attaches C to the value of expression e. The contract assertion is adorned with a blame
label ` which identifies the top-level assertion of that contract. Each blame label is implicitly
bound to the context and the subject of that assertion.

A contract definition E is the top-level construct for contracts. It is either the definition
of a flat contract which consists of a predicate expression λx.e, a contract abstraction (aka
constructor definition) that abstracts a variable x from a contract definition E , a constructor
application which applies a contract abstraction to an argument value, a contract mapping
that maps a property name indicated by a constant c to a contract definition E , the definition
of a function contract, the definition of a dependent contract, or the intersection or union of
two contract definitions.
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Constant 3 c

Variable 3 x, y, z

Expression 3 e, f, g ::= c (constant)
| x (variable)
| op (e, e) (primitive operation)
| λx.e (abstraction)
| e e (application)
| new e (object creation)
| e [e] (property read)
| e [e] = e (property assignment)

Figure 5.1 Syntax of λJ .

Location 3 l

Value 3 u, v, w ::= c (constant)
| l (location)

Dictionary 3 d ::= ∅ (empty set)
| d[c 7→ v] (dictionary extension)

Object 3 o ::= 〈d, v〉 (native object)
| 〈ρ, λx.e〉 (function object)

Environment 3 ρ ::= ∅ (empty set)
| ρ[x 7→ v] (environment extension)

Store 3 σ ::= ∅ (empty set)
| σ[l 7→ o] (store extension)

Figure 5.2 Semantic domains of λJ .
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Expression 3 e, f, g += e@`f (top-level assertion)
| E (contract definition)

Contract Definition 3 E ,F ,G ::= flat (λx.e) (flat contract)
| Λx.E (abstraction)
| E e (application)
| M (object contract)
| E → E (function contract)
| • 7→ E (dependent contract)
| E ∩ E (intersection)
| E ∪ E (union)

Contract Mapping 3 M ::= · (empty set)
| M; c : E (contract binding)

Figure 5.3 Syntax extension of λCON .

Contract 3 C,D ::= I (immediate contract)
| Q (delayed contract)
| I ∩ C (intersection)
| C ∪ Q (union)

Immediate Contract 3 I,J ::= flat (l) (flat contract)

Delayed Contract 3 Q,R ::= O (object contract)
| C → D (function contract)
| • 7→ A (dependent contract)
| Q ∩ R (intersection)

Object Contract 3 O ::= · (empty set)
| O; c : C (contract binding)

Contract Constructor 3 A ::= (ρ,Λx.E) (constructor)

Figure 5.4 Core contracts of λCON .
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Contract definitions E evaluate to a core contract (contract value). A core contract C
(Figure 5.4) is either an immediate contract I, a delayed contract Q, an intersection of an
immediate contract and a contract I ∩ C, or a union of two contracts C ∪ D. Core contracts
distinguish immediate contracts I that are checked right away when asserted to a value and
delayed contracts Q that stay on a value until the value is used.

Immediate contracts I and J stand for flat contracts defined by a function object l that
is interpreted as a predicate on its argument value x. The assertion of a flat contract to a
subject value applies the predicate function to the subject value and interprets the outcome
of the predicate as a truth value. The assertion of a flat contract always returns the subject
value itself.

A delayed contract Q is either an object contract O, a function contract C → D, a
dependent contract • 7→ A, or a finite intersection of delayed contracts Q∩R.

An object contract O is a sequence of property names c and their contracts C. A ;
(semicolon) operator extends an object contract with a new key/contract pair on the right.
For technical reasons, we assume that the property name c of the new binding is different
from the property names in O. The assertion of an object contract expects that the contract
for a property name c holds for property c of the contracted object.

A function contract C → D is built from a domain contract C and range contract D.
Calling a function with a function contract asserts C to the argument (domain) and D to the
result (range) of that function. Both contracts can be an arbitrary other contract.

A dependent contract • 7→ A is a special kind of a function contract. It is defined by a
contract constructor A that maps the argument value of a function to a contract definition,
which is applied to the function’s return value.

A contract constructor (ρ,Λx.E) is not a contract by itself, but it abstracts a parameter
x that is bound in the contract arising from contract definition E . Dependent contracts and
constructor applications rely on contract constructors to substitute values for x at runtime.

Delayed contracts include intersections of delayed contracts because for each use of the
contracted value the context can choose to fulfill either of them. Delayed contracts stay with
the value until the value is used in either an application or a property access.

Without loss of generality, we require core contracts to be in a canonical form. The
canonical form restricts top-level intersections to an intersection of an immediate contract
and a rest contract. This requires that unions and flat contracts are distributivity pulled out
of an intersection of delayed contracts such that all immediate parts can be checked right
away when asserted to a value and that intersections and unions evaluate in the right way.

5.3 Constraints

The presence of intersection and union contracts requires that a failing contract must not
signal a contract violation immediately. A violation may depend on a combination of failures
in different sub-contracts. Thus, contract monitoring must connect each contract with the
enclosing contract operation, and it must compute a violation in terms of its constituents.

This connection is modeled by so-called constraints ϕ (Figure 5.5). They are tied to a
particular contract assertion and link each contract to its next enclosing operation, or at
the top-level to its assertion. A constraint ϕ is either a flat constraint [ J b that maps the
outcome of a flat contract b to blame identifier [ or a constraint that chains the outcome of
one or more contracts to the outcome of another contract in [. There is one constraint for
each operator on contracts, namely an indirection constraint [ J ι, a flat constraint [ J b,
an inversion constraint [ J ¬ι, a function constraint [ J ι → ι, an intersection constraint
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Identifier 3 [ ::= ` (label)
| ι (variable)

Constraint 3 ϕ ::= [ J ι (indirection constraint)
| [ J b (flat constraint)
| [ J ¬ι (inversion constraint)
| [ J ι→ ι (function constraint)
| [ J ι ∩ ι (intersection constraint)
| [ J ι ∪ ι (union constraint)

Constraint List 3 ς ::= · (empty list)
| ϕ : ς (list extension)

Figure 5.5 Syntax of constraints.

[ J ι ∩ ι, and a union constraint [ J ι ∪ ι. The inversion constraint handles the reverse of
the responsibilities after writing a property on an object with an object contract.

Constraints contain blame identifiers [ drawn from an unspecified denumerable set of
blame labels ` and blame variables ι. Blame labels ` only occur in source programs and
identify the top-level assertion of a contract, whereas blame variables ι arise during contract
evaluation and identify the assertion of a particular constituent. Each identifier is related to
one specific contract assertion in a program. There is at least one identifier for each contract
assertion and there may be multiple identifiers for delayed contracts.

During the evaluation, a constraint list ς collects constraints that arise from contract
monitoring. Technically, each constraint list is a forest which is extended on its leafs. The
sequence of elements in the list reflects the temporal order in which the constraints were
generated during evaluation. The latest, youngest, constraint is always on top of the list.
Blame calculation always happens from this list of constraints.

5.4 Contract Monitoring

This section presents the formal semantics of λCON . The formalization employs pretty-big-
step semantics [15] to model side effects and signaling of violations while keeping the number
of evaluation rules manageable.

A pretty-big-step semantics introduces intermediate term t (Figure 5.6) to model partially
evaluated expressions. An intermediate terms t is thus an expression with zero or more
top-level sub-expressions replaced by their outcomes, which we call behaviors. A behavior b
is either a value v, a contract C, a contract constructor A, or an error err, which is either
a positive blame +blame` or a negative blame -blame`. New to the syntax of intermediate
terms is an internal contract assertion v@ιC. Terms are constructed with a specific evaluation
order in mind and do not occur in source programs. They only arise during evaluation.
Moreover, we extend intermediate terms with terms that contain other intermediate terms.
This is required to introduce contracts without a big effort.

A proxy object (Figure 5.7) is a single location l controlled by a proxy handler that
mediates the access to the target location. Proxy objects pack a delayed contract together
with its subject value and implement sandbox wrappers that encapsulate data structures
when using values inside of predicate code. For simplification, we represent handler objects
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Error 3 err ::= +blame` (positive blame)
| -blame` (negative blame)

Behavior 3 b ::= v (value)
| C (contract)
| A (constructor)
| err (error)

Term 3 t ::= e (expression)
| op (b, e) | op (v, b) (primitive operation)
| b e | l b (application)
| new b (object creation)
| b [e] | l [b] (property read)
| b [e] = e | l [b] = e | l [c] = b (property assignment)
| b@`f | v@`b (top-level assertion)
| b@ιC (contract assertion)
| A b (constructor application)
| Q; c : E | O; c : b (object contract)
| b→ E | C → b (function contract)
| • 7→ b (dependent contract)
| b ∩ E | C ∩ b (intersection contract)
| b ∪ E | C ∪ b (union contract)
| t@ιC | v@ιt (contract assertion)
| t t | v t | t v (application)
| t [c] (property read)
| t [c] = v | l [c] = t (property assignment)

Figure 5.6 Intermediate terms of λCON .

Object 3 o += 〈v, ι,Q〉 (contract proxy)
| 〈l, ρ̂〉 (sandbox proxy)

Context 3 κ ::= • (global context)
| C (contract)
| A (constructor)

Figure 5.7 Semantic domains extension of λCON .
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by the handler’s meta-data. Consequently, λCON objects are extended with contract proxies
〈v, ι,Q〉 and sandbox proxies 〈l, ρ̂〉. A contract proxy is a value wrapped in a delayed contract
that is to be monitored when the value is used. A sandbox proxy is a wrapper for another
location and mediates the access to that target location.

To state evaluation, a context κ distinguishes the global execution context • from the
context in a contract C or a contract constructor A. This context information is needed to
blame the correct context for a contract violation.

5.4.1 Evaluation of λCON

The evaluation judgment is similar to a standard big-step evaluation judgment except that
its input ranges over intermediate terms and its output is a behavior. The judgment states
that the evaluation of term t with initial store σ, constraint list ς, environment ρ, and context
κ results in a final heap σ′, constraint list ς ′, and behavior b:

κ, ρ ` σ, ς, t ⇓ σ′, ς ′, b

Figure 5.8 and 5.9 defines the standard evaluation rules for expressions e in λCON . The
evaluation rules for expressions are mostly standard. Each rule for a composite expression
evaluates exactly one sub-expression and then recursively invokes the evaluation judgment
to continue. Once all sub-expressions are evaluated, the respective rule performs the desired
operation. The corresponding straightforward error propagation rules are disjoint to the
remaining rules because they fire only if an intermediate-term contains an error. Figure 5.10
defines the evaluation rules for intermediate terms with nested terms, and the rule set in
Figure 5.11 defines error handling, which always propagates an error to the top level.

The rules Const, Var, and Undef are standard. Rule Op applies a primitive operation to
its argument values. The extended set of objects requires to revisit primitive operations on
values. Function bvcσ (Figure 5.12) first erases all contract monitors and sandbox wrappers
from its argument values before it proceeds with the usual operation. This unwrapping
makes proxies transparent with respect to primitive operations on locations.

Rule Abs allocates a new function object consisting of a closure with the current environ-
ment and rule New allocates a new native object based on the evaluated prototype.

Function application, property lookup, and property assignment distinguish two cases:
either the operation applies directly to a target object (non-proxy object) or it applies
to a proxy. If the given reference is a non-proxy object, then the usual rules apply: App
for function application, Get for property lookup, and Put for property assignment. The
evaluation rules for the non-standard cases are given in Section 5.4.5 and Section 5.4.6.

The rules Get, Get-Proto, and Get-Undef implement JavaScript’s lookup operation
through prototype chains. Each object has an internal prototype property which links to
another object or to a constant value, signaling the end of the chain. If a property is not
contained in the object’s dictionary rule Get-Proto forwards the lookup to the prototype
object. When reaching the end of the chain rule Get-Undef returns undefined by default.

It remains to define contract assertion. The contract assertion (Figure 5.13) applies after
the first sub-expression e evaluates to a value v and the contract expression f evaluates to
a contract C. Rule Assert creates a new blame variable ι for each new instantiation of a
contract in the source program. It further extends the constraint set by a new constraint
that links the outcome of the contract monitor to blame label `.
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Const
κ, ρ ` σ, ς, c ⇓ σ, ς, c

Var
x ∈ dom (ρ)

κ, ρ ` σ, ς, x ⇓ σ, ς, ρ (x)

Undef
x 6∈ dom (ρ)

κ, ρ ` σ, ς, x ⇓ σ, ς, undefined

Op-E
κ, ρ ` σ, ς, e ⇓ σ′, ς ′, b κ, ρ ` σ′, ς ′, op (b, f) ⇓ σ′′, ς ′′, b′

κ, ρ ` σ, ς, op (e, f) ⇓ σ′′, ς ′′, b′

Op-F
κ, ρ ` σ, ς, f ⇓ σ′, ς ′, b κ, ρ ` σ′, ς ′, op (v, b) ⇓ σ′′, ς ′′, b′

κ, ρ ` σ, ς, op (v, f) ⇓ σ′′, ς ′′, b′

Op
v′ = bvcσ w′ = bwcσ v′, w′ ∈ dom (δop) u = δop (v′, w′)

κ, ρ ` σ, ς, op (v, w) ⇓ σ, ς, u

Abs
l /∈ dom (σ) σ′ = σ[l 7→ 〈ρ, λx.e〉]

κ, ρ ` σ, ς, λx.e ⇓ σ′, ς, l

App-E
κ, ρ ` σ, ς, e ⇓ σ′, ς ′, b κ, ρ ` σ, ς ′′, b f ⇓ σ′′, ς ′′, b′

κ, ρ ` σ, ς, e f ⇓ σ′′, ς ′′, b′

App-F
κ, ρ ` σ, ς, f ⇓ σ′, ς ′, b κ, ρ ` σ′, ς ′, l b ⇓ σ′′, ς ′′, b′

κ, ρ ` σ, ς, l f ⇓ σ′′, ς ′′, b′

App
〈ρ′, λx.e〉 = σ(l) ρ′[x 7→ v] ` σ, ς, e ⇓ σ′, ς ′, w

κ, ρ ` σ, ς, l v ⇓ σ′, ς ′, w

Figure 5.8 Evaluation rules for intermediate terms of λCON .
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New-E
κ, ρ ` σ, ς, e ⇓ σ′, ς ′, b κ, ρ ` σ′, ς ′, new b ⇓ σ′′, ς ′′, b′

κ, ρ ` σ, ς, new e ⇓ σ′′, ς ′′, b′

New
l /∈ dom (σ) σ′ = σ[l 7→ 〈∅, v〉]

κ, ρ ` σ, ς, new v ⇓ σ′, ς, l

Get-E
κ, ρ ` σ, ς, e ⇓ σ′, ς ′, b κ, ρ ` σ′, ς ′, b [f ] ⇓ σ′′, ς ′′, b′

κ, ρ ` σ, ς, e [f ] ⇓ σ′′, ς ′′, b′

Get-F
κ, ρ ` σ, ς, f ⇓ σ′, ς ′, b κ, ρ ` σ′, ς ′, l [b] ⇓ σ′′, ς ′′, b′

κ, ρ ` σ, ς, l [f ] ⇓ σ′′, ς ′′, b′

Get
〈d, u〉 = σ (l) c ∈ dom (d)
κ, ρ ` σ, ς, l [c] ⇓ σ, ς, d (c)

Get-Proto
〈d, l′〉 = σ (l) c 6∈ dom (d) κ, ρ ` σ, ς, l′ [c] ⇓ σ′, ς ′, b′

κ, ρ ` σ, ς, l [c] ⇓ σ′, ς ′, b′

Get-Undef
〈d, c′〉 = σ (l) c 6∈ dom (d)

κ, ρ ` σ, ς, l [c] ⇓ σ, ς, undefined

Put-E
κ, ρ ` σ, ς, e ⇓ σ′, ς ′, b κ, ρ ` σ′, ς ′, b [f ] = g ⇓ σ′′, ς ′′, b′

κ, ρ ` σ, ς, e [f ] = g ⇓ σ′′, ς ′′, b′

Put-F
κ, ρ ` σ, ς, f ⇓ σ′, ς ′, b κ, ρ ` σ′, ς ′, l [b] = g ⇓ σ′′, ς ′′, b′

κ, ρ ` σ, ς, l [f ] = g ⇓ σ′′, ς ′′, b′

Put-G
κ, ρ ` σ, ς, g ⇓ σ′, ς ′, b κ, ρ ` σ′, ς ′, l [c] = b ⇓ σ′′, ς ′′, b′

κ, ρ ` σ, ς, l [c] = g ⇓ σ′′, ς ′′, b′

Put
〈d,w〉 = σ (l) σ′ = σ[l 7→ 〈d[c 7→ v], w〉]

κ, ρ ` σ, ς, l [c] = v ⇓ σ′, ς, v

Figure 5.9 Evaluation rules for intermediate terms of λCON (cont’d).
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App-T-1
κ, ρ ` σ, ς, t ⇓ σ′, ς ′, b κ, ρ ` σ′, ς ′, b t2 ⇓ σ′′, ς ′′, b′

κ, ρ ` σ, ς, t1 t2 ⇓ σ′′, ς ′′, b′

App-T-2
κ, ρ ` σ, ς, t ⇓ σ′, ς ′, b κ, ρ ` σ′, ς ′, b v ⇓ σ′′, ς ′′, b′

κ, ρ ` σ, ς, t v ⇓ σ′′, ς ′′, b′

App-T-3
κ, ρ ` σ, ς, t ⇓ σ′, ς ′, b κ, ρ ` σ′, ς ′, v b ⇓ σ′′, ς ′′, b′

κ, ρ ` σ, ς, v t ⇓ σ′′, ς ′′, b′

Get-T
κ, ρ ` σ, ς, t ⇓ σ′, ς ′, b κ, ρ ` σ′, ς ′, b [c] ⇓ σ′′, ς ′′, b′

κ, ρ ` σ, ς, t [c] ⇓ σ′′, ς ′′, b′

Put-T-1
κ, ρ ` σ, ς, t ⇓ σ′, ς ′, b κ, ρ ` σ′, ς ′, b [c] = v ⇓ σ′′, ς ′′, b′

κ, ρ ` σ, ς, t [c] = v ⇓ σ′′, ς ′′, b′

Put-T-2
κ, ρ ` σ, ς, t ⇓ σ′, ς ′, b κ, ρ ` σ′, ς ′, l [c] = b ⇓ σ′′, ς ′′, b′

κ, ρ ` σ, ς, l [c] = t ⇓ σ′′, ς ′′, b′

Assert-T-1
κ, ρ ` σ, ς, t ⇓ σ′, ς ′, b κ, ρ ` σ′, ς ′, b@ιC ⇓ σ′′, ς ′′, b′

κ, ρ ` σ, ς, t@ιC ⇓ σ′′, ς ′′, b′

Assert-T-2
κ, ρ ` σ, ς, t ⇓ σ′, ς ′, b κ, ρ ` σ′, ς ′, v@ιb ⇓ σ′′, ς ′′, b′

κ, ρ ` σ, ς, v@ιt ⇓ σ′′, ς ′′, b′

Figure 5.10 Evaluation rules for intermediate terms of λCON (cont’d).
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Error-Op-E
κ, ρ ` σ, ς, op (err, f) ⇓ σ, ς, err

Error-Op-F
κ, ρ ` σ, ς, op (v, err) ⇓ σ, ς, err

Error-App-E
κ, ρ ` σ, ς, err f ⇓ σ, ς, err

Error-App-F
κ, ρ ` σ, ς, l err ⇓ σ, ς, err

Error-App-T-1
κ, ρ ` σ, ς, err t ⇓ σ, ς, err

Error-App-T-2
κ, ρ ` σ, ς, err v ⇓ σ, ς, err

Error-New-E
κ, ρ ` σ, ς, new err ⇓ σ, ς, err

Error-Get-E
κ, ρ ` σ, ς, err [f ] ⇓ σ, ς, err

Error-Get-F
κ, ρ ` σ, ς, l [err] ⇓ σ, ς, err

Error-Get-T
κ, ρ ` σ, ς, err [C] ⇓ σ, ς, err

Error-Put-E
κ, ρ ` σ, ς, err [f ] = g ⇓ σ, ς, err

Error-Put-F
κ, ρ ` σ, ς, l [err] = g ⇓ σ, ς, err

Error-Put-G
κ, ρ ` σ, ς, l [c] = err ⇓ σ, ς, err

Error-Put-T
κ, ρ ` σ, ς, err [c] = v ⇓ σ, ς, err

Error-Assert-E
κ, ρ ` σ, ς, err@`E ⇓ σ, ς, err

Error-Assert-F
κ, ρ ` σ, ς, v@`err ⇓ σ, ς, err

Error-Assert-T
κ, ρ ` σ, ς, v@ιerr ⇓ σ, ς, err

Error-Assert
κ, ρ ` σ, ς, err@ιC ⇓ σ, ς, err

Figure 5.11 Evaluation rules for error handling of λCON .

bvcσ =


bwcσ v = l, 〈w, ι,Q〉 = σ (l)
bl′cσ v = l, 〈l′, ρ̂〉 = σ (l)
v otherwise

Figure 5.12 Unwrap proxy objects.

Assert-E
κ, ρ ` σ, ς, e ⇓ σ′, ς ′, b κ, ρ ` σ′, ς ′, b@`f ⇓ σ′′, ς ′′, b′

κ, ρ ` σ, ς, e@`f ⇓ σ′′, ς ′′, b′

Assert-F
κ, ρ ` σ, ς, f ⇓ σ, ς, b κ, ρ ` σ, ς, v@`b ⇓ σ′′, ς ′′, b′

κ, ρ ` σ, ς, v@`f ⇓ σ′′, ς ′′, b′

Assert
ι /∈ dom (ς) κ, ρ ` σ, (` J ι) : ς, v@ιC ⇓ σ′′, ς ′′, b′

κ, ρ ` σ, ς, v@`C ⇓ σ′′, ς ′′, b′

Figure 5.13 Evaluation rules for top-level contract assertion.
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Constructor-Abstraction
•, ρ ` σ, ς,Λx.E ⇓ σ′, ς ′, (∅,Λx.E)

Constructor-Abstraction-Sandbox
A, ρ̂ ` σ, ς,Λx.E ⇓ σ, ς, (ρ̂,Λx.E)

Constructor-Application-E
κ, ρ ` σ, ς, E ⇓ σ′, ς ′, b κ, ρ ` σ, ς ′, b f ⇓ σ′′, ς ′′, b′

κ, ρ ` σ, ς, E f ⇓ σ′′, ς ′′, b′

Constructor-Application-F
κ, ρ ` σ, ς, f ⇓ σ′, ς ′, b κ, ρ ` σ′, ς ′,A b ⇓ σ′′, ς ′′, b′

κ, ρ ` σ, ς,A f ⇓ σ′′, ς ′′, b′

Constructor-Application
(ρ̂,Λx.E) = A wrap (v, ρ̂, σ, ς) = (v̂, σ′, ς ′) A, ρ̂[x 7→ v̂] ` σ′, ς ′, E ⇓ σ′′, ς ′′, b

κ, ρ ` σ, ς,A v ⇓ σ′′, ς ′′, b

Figure 5.14 Evaluation rules for contract definition.

5.4.2 Contract Definition

Contracts C are built from contract definitions E that evaluate to a canonical contract value.
Figure 5.14, 5.15, and 5.16 define the evaluation of contract definitions E . Again, each
rule evaluates one sub-expression and applies the evaluation judgment recursively until all
sub-expressions are evaluated to a canonical contract. Figure 5.17 shows the corresponding
error propagation rules.

Contract definition happens in the context of a secure sandbox environment to prevent
inference with the actual program execution. For clarity, we write ρ̂ for a (secure) sandbox
environment, û, v̂ and ŵ for a secure value, and l̂ for a secure location. A secure value v̂ is
either a constant or a secure location l̂, which is a location of a sandbox proxy or an object
created inside of a sandbox environment. A sandbox environment ρ̂ is an environment ρ that
maps a variable x to a secure v̂.

A contract abstraction (constructor definition) Λx.E (Rule Constructor-Abstraction
and Constructor-Abstraction-Sandbox) evaluates to a contract closure A containing
the abstraction together with an empty (secure) environment or together with a sandbox
environment when defining the abstraction inside of a sandbox environment.

The constructor application (Rule Constructor-Application) starts after the first ex-
pression evaluates to a contract closure, and the second expression evaluates to a value. It
wraps the given value v and evaluates contract definition E in the sandbox environment bind-
ing the sandboxed value v̂. Sandbox environments are always built like this. Meta-function
wrap (v, ρ̂, σ, ς) (cf. Section 5.4.6) packs the value in a sandbox proxy to avoid interference.

Rule Define-Flat and Define-Flat-Sandbox defines a flat contract. The contained
predicate definition evaluates to a function closure containing the predicate. The function
closure contains either an empty environment or a sandbox environment.

The remaining construction rules for composed contracts are straightforward. An object
contract is built from the key/contract bindings of a contract mapping, a function contract is
built from a contract for the range and a contract for the domain of a function, a dependent
contract is built from a contract constructor, and the intersection and union of two contracts
is built from two sub-contract.
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Define-Flat
•, ∅ ` σ, ς, λx.e ⇓ σ′, ς, l

•, ρ ` σ, ς, flat (λx.e) ⇓ σ′, ς, flat (l)

Define-Flat-Sandbox
A, ρ̂ ` σ, ς, λx.e ⇓ σ′, ς, l

A, ρ̂ ` σ, ς, flat (λx.e) ⇓ σ′, ς, flat (l)

Define-Object-M
κ, ρ ` σ, ς,M ⇓ σ′, ς ′, b κ, ρ ` σ′, ς ′, b; c : E ⇓ σ′′, ς ′′, b′

κ, ρ ` σ, ς,M; c : E ⇓ σ′′, ς ′′, b′

Define-Object-E
κ, ρ ` σ, ς, E ⇓ σ′, ς ′, b ρ̂ ` σ′, ς ′,O; c : b ⇓ σ′′, ς ′′, b′

κ, ρ ` σ, ς,O; c : E ⇓ σ′′, ς ′′, b′

Define-Object
κ, ρ ` σ, ς,O ⇓ σ, ς,O

Define-Function-E
κ, ρ ` σ, ς, E ⇓ σ′, ς ′, b κ, ρ ` σ′, ς ′, b→ F ⇓ σ′′, ς ′′, b′

κ, ρ ` σ, ς, E → F ⇓ σ′′, ς ′′, b′

Define-Function-F
κ, ρ ` σ, ς,F ⇓ σ′, ς ′, b κ, ρ ` σ′, ς ′, C → b ⇓ σ′′, ς ′′, b′

κ, ρ ` σ, ς, C → F ⇓ σ′′, ς ′′, b′

Define-Function
κ, ρ ` σ, ς, C → D ⇓ σ, ς, C → D

Define-Dependent-E
κ, ρ ` σ, ς, E ⇓ σ′, ς ′, b κ, ρ ` σ′, ς ′, • 7→ b ⇓ σ′′, ς ′′, b′

κ, ρ ` σ, ς, • 7→ E ⇓ σ′′, ς ′′, b′

Define-Dependent
κ, ρ ` σ, ς, • 7→ A ⇓ σ, ς, • 7→ A

Figure 5.15 Evaluation rules for contract definition (cont’d).

5.4.3 Contract Normalization

Contracts C are created by a set of contract expression E that may also contain arbitrary
top-level intersections of contracts. However, contract monitoring requires contracts to be in
a canonical form which separates immediate and delayed parts and which enables to evaluate
contracts in the correct order. To this end, contract evaluation normalizes non-canonical
contracts into a canonical form before it starts their enforcement.

The rules in Figure 5.18 implement contract normalization. The rules are disjoint to the
already existing contract definitions in Figure 5.16 and fire only on non-canonical contracts.

Rule N-Immediate, N-Intersection, and N-Union interchange the operands of an inter-
section. Rule N-Factorize distributively pulls a union contract out of an intersection and
rule N-Rearrange rearranges the parenthesis of a nested intersection. As we always build
contracts from canonical contracts, we only need to consider the non-canonical intersection
of two arbitrary other (canonical) contracts.

Each normalization rule, except rule N-Factorize, preserves the total number contract
checks. They only reorganize the contained contracts. Only rule N-Factorize builds a new
union out of two intersection contracts and thus it duplicates the contract D. This is required



54 Contracts and Contract Monitoring

Define-Intersection-E
κ, ρ ` σ, ς, E ⇓ σ′, ς ′, b κ, ρ ` σ′, ς ′, b ∩ F ⇓ σ′′, ς ′′, b′

κ, ρ ` σ, ς, E ∩ F ⇓ σ′′, ς ′′, b′

Define-Intersection-F
κ, ρ ` σ, ς,F ⇓ σ′, ς ′, b κ, ρ ` σ′, ς ′, C ∩ b ⇓ σ′′, ς ′′, b′

κ, ρ ` σ, ς, C ∩ F ⇓ σ′′, ς ′′, b′

Define-Intersection
κ, ρ ` σ, ς, I ∩ C ⇓ σ, ς, I ∩ C

Define-Delayed-Intersection
κ, ρ ` σ, ς,Q∩R ⇓ σ, ς,Q∩R

Define-Union-E
κ, ρ ` σ, ς, E ⇓ σ′, ς ′, b κ, ρ ` σ′, ς ′, b ∪ F ⇓ σ′′, ς ′′, b′

κ, ρ ` σ, ς, E ∪ F ⇓ σ′′, ς ′′, b′

Define-Union-F
κ, ρ ` σ, ς,F ⇓ σ′, ς ′, b κ, ρ ` σ′, ς ′, C ∪ b ⇓ σ′′, ς ′′, b′

κ, ρ ` σ, ς, C ∪ F ⇓ σ′′, ς ′′, b′

Define-Union
κ, ρ ` σ, ς, C ∪ D ⇓ σ, ς, C ∪ D

Figure 5.16 Evaluation rules for contract definition (cont’d).

Error-Constructor-Application-E
κ, ρ ` σ, ς,A err ⇓ σ, ς, err

Error-Define-Object-M
κ, ρ ` σ, ς, err; c : E ⇓ σ, ς, err

Error-Define-Object-E
κ, ρ ` σ, ς,O; c : err ⇓ σ, ς, err

Error-Define-Function-E
κ, ρ ` σ, ς, err→ F ⇓ σ, ς, err

Error-Define-Function-F
κ, ρ ` σ, ς, C → err ⇓ σ, ς, err

Error-Define-Dependent-E
κ, ρ ` σ, ς, • 7→ err ⇓ σ, ς, err

Error-Define-Intersection-E
κ, ρ ` σ, ς, err ∩ F ⇓ σ, ς, err

Error-Define-Intersection-F
κ, ρ ` σ, ς, C ∩ err ⇓ σ, ς, err

Error-Define-Union-E
κ, ρ ` σ, ς, err ∪ F ⇓ σ, ς, err

Error-Define-Union-F
κ, ρ ` σ, ς, C ∪ err ⇓ σ, ς, err

Figure 5.17 Evaluation rules for error handling of λCON (cont’d).
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N-Immediate
κ, ρ ` σ, ς,Q∩ I ⇓ σ, ς, I ∩ Q

N-Intersection
κ, ρ ` σ, ς, (I ∩ C) ∩Q ⇓ σ, ς,D
κ, ρ ` σ, ς,Q∩ (I ∩ C) ⇓ σ, ς,D

N-Union
κ, ρ ` σ, ς, (C ∪ D) ∩Q ⇓ σ, ς, C′

κ, ρ ` σ, ς,Q∩ (C ∪ D) ⇓ σ, ς, C′

N-Factorize
κ, ρ ` σ, ς, C1 ∩ D ⇓ σ, ς, C′ κ, ρ ` σ, ς, C2 ∩ D ⇓ σ, ς,D′

κ, ρ ` σ, ς, (C1 ∪ C2) ∩ D ⇓ σ, ς, C′ ∪ D′

N-Rearrange
κ, ρ ` σ, ς, C ∩ D ⇓ σ, ς, C′

κ, ρ ` σ, ς, (I ∩ C) ∩ D ⇓ σ, ς, I ∩ C′

Figure 5.18 Evaluation rules for contract normalization.

to preserve the semantics of the contract, but it increases the total number of contract checks.

The logical justification for all these rules is the associativity, commutativity, and dis-
tributivity of intersection and union contract. To guarantee this, a compatibility check (cf.
Section 5.6) ensures that the contract assertion does not mix up contracts that belong to
different operands of an intersection or union contract.

5.4.4 Contract Assertion

Contract assertion starts after evaluating the first expression to a subject value v and
evaluating the contract definition to a contract C. Figure 5.19 shows its evaluation rules.

Rule Flat starts evaluating a flat contract by applying the predicate to the wrapped
subject value. Meta-function drop (v, ι, σ, ς) first drops all non-compatible delayed contracts
(cf. Section 5.6) on the subject value. It removes all contract wrappers that do not belong
to the same side of an intersection or union. Function wrap wraps the resulting value in a
sandbox proxy to avoid interference (cf. Section 5.4.6). Afterwards, it triggers the predicate
evaluation on the wrapped subject value. All operations happen under a new context, which
is the current flat contract. This ensures that all contract violations that happen during the
predicate evaluation blame the contract, instead of the global context.

The rules Intersection and Union implement contract checking of top-level intersection
and union contracts. Both rules assert the first sub-contract to the subject value and
assert the second sub-contract to the resulting behavior of the first assertion. The contract
evaluation installs a new constraint that links the outcome of both sub-contracts to the
satisfaction of the contract.

Finally, rule Delayed wraps a subject value and a delayed contract together with the
associated blame identifiers in a contract proxy that later checks the contract when the value
is used (see also Section 5.4.5).
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Flat
〈ρ̂, λx.e〉 = σ (l) drop (v, ι, σ, ς) = (w, σ′) wrap (w, ρ̂, σ′, ς) = (ŵ, σ′′, ς ′)

flat (l), ρ ` σ′′, ς ′, v@ι (l ŵ) ⇓ σ′′′, ς ′′, b

κ, ρ ` σ, ς, v@ιflat (l) ⇓ σ′′′, ς ′′, b

Union
ι1, ι2 /∈ dom (ς) κ, ρ ` σ, ι J (ι1 ∪ ι2) : ς, (v@ι1C) @ι2D ⇓ σ′, ς ′, b

κ, ρ ` σ, ς, v@ι(C ∪ D) ⇓ σ′, ς ′, b

Intersection
ι1, ι2 /∈ dom (ς) κ, ρ ` σ, ι J (ι1 ∩ ι2) : ς, (v@ι1I) @ι2C ⇓ σ′, ς ′, b

κ, ρ ` σ, ς, v@ι(I ∩ C) ⇓ σ′, ς ′, b

Delayed
l′ /∈ dom (σ) σ′ = σ [l′ 7→ 〈l, ι,Q〉]

κ, ρ ` σ, ς, v@ιQ ⇓ σ′, ς, l′

Figure 5.19 Evaluation rules for contract assertion in λCON .

App-Function
〈w, ι, (C → D)〉 = σ (l)

ι1, ι2 /∈ dom (ς) κ, ρ ` σ, ι J (ι1 → ι2) : ς, (w (v@ι1C)) @ι2D ⇓ σ′, ς ′, b

κ, ρ ` σ, ς, l v ⇓ σ′, ς ′, b

App-Dependent
〈w, ι, (• 7→ A)〉 = σ (l)

drop (v, ι, σ, ς) = (w′, σ′) κ, ρ ` σ′, ς ′, (w v) @ι (Aw′) ⇓ σ′, ς ′, b

κ, ρ ` σ, ς, l v ⇓ σ′, ς ′, b

App-Object
〈w, ι,O〉 = σ (l) κ, ρ ` σ, ς, w v ⇓ σ′, ς ′, b

κ, ρ ` σ, ς, l v ⇓ σ′, ς ′, b

App-Intersection
〈w, ι, (Q∩R)〉 = σ (l)

ι1, ι2 /∈ dom (ς) κ, ρ ` σ, ι J (ι1 ∩ ι2) : ς, ((w@ι1Q) @ι2R) v ⇓ σ′, ς ′, b

κ, ρ ` σ, ς, l v ⇓ σ′, ς ′, b

Figure 5.20 Evaluation rules for function application on a contract proxy.
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Get-Function
〈w, ι, (C → D)〉 = σ (l) κ, ρ ` σ, ς, w [c] ⇓ σ′, ς ′, b

κ, ρ ` σ, ς, l [c] ⇓ σ′, ς ′, b

Get-Dependent
〈w, ι, (• 7→ A)〉 = σ (l) κ, ρ ` σ, ς, w [c] ⇓ σ′, ς ′, b

κ, ρ ` σ, ς, l [c] ⇓ σ′, ς ′, b

Get-Object-Existing
〈w, ι,O〉 = σ (l) c : C ∈ O κ, ρ ` σ, ς, (w [c]) @ιC ⇓ σ′, ς ′, b

κ, ρ ` σ, ς, l [c] ⇓ σ′, ς ′, b

Get-Object-NotExisting
〈w, ι,O〉 = σ (l) 6 ∃c : C ∈ O κ, ρ ` σ, ς, w [c] ⇓ σ′, ς ′, b

κ, ρ ` σ, ς, l [c] ⇓ σ′, ς ′, b

Get-Intersection
〈w, ι, (Q∩R)〉 = σ (l)

ι1, ι2 /∈ dom (ς) κ, ρ ` σ, ι J (ι1 ∩ ι2) : ς, ((w@ι1Q) @ι2R) [c] ⇓ σ′, ς ′, b

κ, ρ ` σ, ς, l [c] ⇓ σ′, ς ′, b

Figure 5.21 Evaluation rules for property read on a contract proxy.

Put-Function
〈w, ι, (C → D)〉 = σ (l) κ, ρ ` σ, ς, w [c] = v ⇓ σ′, ς ′, b

κ, ρ ` σ, ς, l [c] = v ⇓ σ′, ς ′, b

Put-Dependent
〈w, ι, (• 7→ A)〉 = σ (l) κ, ρ ` σ, ς, w [c] = v ⇓ σ′, ς ′, b

κ, ρ ` σ, ς, l [c] = v ⇓ σ′, ς ′, b

Put-Object-Existing
〈w, ι,O〉 = σ (l)

c : C ∈ O ι1 /∈ dom (ς) κ, ρ ` σ, ι J ¬ι1 : ς, w [c] = (v@ι1C) ⇓ σ′, ς ′, b

κ, ρ ` σ, ς, l [c] = v ⇓ σ′, ς ′, b

Put-Object-NotExisting
〈w, ι,O〉 = σ (l) 6 ∃c : C ∈ O κ, ρ ` σ, ς, w [c] = v ⇓ σ′, ς ′, b

κ, ρ ` σ, ς, l [c] = v ⇓ σ′, ς ′, b

Put-Intersection
〈w, ι, (Q∩R)〉 = σ (l)

ι1, ι2 /∈ dom (ς) κ, ρ ` σ, ι J (ι1 ∩ ι2) : ς, ((w@ι1Q) @ι2R) [c] = v ⇓ σ′, ς ′, b

κ, ρ ` σ, ς, l [c] = v ⇓ σ′, ς ′, b

Figure 5.22 Evaluation rules for property assignment on a contract proxy.
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5.4.5 Delayed Contract Checking

Object contracts, function contracts, dependent contracts, and intersections thereof are
delayed contracts. They are dormant and stay with the subject value until the value is used
in an application or a property access. Therefore, property read, property write, and function
application distinguish two cases: either the operation applies directly to a non-proxy object
or it applies to a proxy object. In the former case, the rules in Figure 5.8 and 5.9 apply.

In the non-standard cases, the operation applies to a proxy object which is either a
contract proxy or a sandbox proxy. Figure 5.20, 5.21, and 5.22 contain the evaluation rules
for function application, property read, and property write on a contract proxy.

Rule App-Function handles the call to a value with a function contract. The domain
contract C is attached to the argument value. Next, the function application proceeds by
passing the contracted argument value to the proxy’s target location. After completion, the
range contract D is applied to the function’s return. In sharp contrast to previous work, the
blame propagation is handled indirectly by creating new blame variables for the domain and
range part. A new constraint is added that chains the outcome of both sub-contracts to the
assertion of the function contract.

Rule App-Dependent handles the call to a value with a dependent contract. In this case,
function application proceeds on the proxy’s target value. Next, meta-function drop (v, ι, σ, ς)
removes all contract wrappers that belong to another side of an intersection or union. The
argument value gets passed to the contract constructor that returns a contract for the
application’s return. Finally, the contract assertion proceeds on the application’s return.

Rule App-Object handles the call to a value with an object contract. As an object
contract does not apply to a function application, it gets ignored and the operation proceeds
on the proxy’s target value.

Rule App-Intersection handles the call to a value with an intersection contract. It
sequentially attaches both sub-contracts to the subject value and proceeds with the application
on the contracted value. The generated constraint combines the outcomes of both sub-
contracts. Unlike the union contract, a new intersection constraint arises at each use of the
contracted value which implements the choice of the context.

A property read and a property write operation on a value with a function or a depen-
dent contract (Rules Get-Function, Get-Dependent, Put-Function, and Put-Dependent)
simply ignores the contract and proceeds with the usual operation on the proxy’s target
value. Both kinds of contracts do not apply to property access.

A property read on a value with an object contract has two cases depending on the presence
of a contract for the accessed property. If a contract exists (Rule Get-Object-Existing),
then the contract is attached to the value that returns from the access on the proxy’s target
value. Otherwise (Rule Get-Object-NotExisting), no contract applies and the value is
simply returned.

A property assignment on a value with an object contract continues with the usual
operation on the proxy’s target value after attaching the property’s contract to the new
value. In TreatJS the adherence of a contract is also checked on assignments, but the check
happens in the context of a new constraint that flips the responsibilities. The context of an
assignment is responsible to assign a value according to its specification. If no contract exists
(Rule Put-Object-NotExisting), then the operation continues with the usual value.

Finally, the rules Get-Intersection and Put-Intersection handle property access on a
value with an intersection contract. Like function application, property access sequentially
attaches both sub-contracts to the subject value and creates a new constraint to link the
outcome of both sub-contract. Then, it continues with the usual operation.
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Wrap-Constant
wrap (c, ρ, σ, ς) = (c, σ, ς)

Wrap-Error
wrap (err, ρ, σ, ς) = (err, σ, ς)

Wrap-Contract
wrap (C, ρ, σ, ς) = (C, σ, ς)

Wrap-Constructor
wrap (A, ρ, σ, ς) = (A, σ, ς)

Wrap-Object
〈d, v〉 = σ (l) l̂ 6∈ dom (σ) σ′ = σ

[
l̂ 7→ 〈l, ρ̂〉

]
wrap (l, ρ̂, σ, ς) =

(
l̂, σ′, ς

)
Wrap-Function
〈ρ, λx.e〉 = σ (l) l̂ /∈ dom (σ) σ′ = σ[l̂ 7→ 〈ρ̂, λx.e〉]

wrap (l, ρ̂, σ, ς) =
(
l̂, σ′, ς

)
Wrap-Delayed
〈l′, ι,Q〉 = σ (l) wrap (l′, ρ̂, σ, ς) =

(
l̂, σ′, ς ′

)
mirror

(
l, l̂, σ, ς

)
=
(
l̂′, σ′′, ς ′′

)
wrap (l, ρ̂, σ, ς) =

(
l̂′, σ′′, ς ′

)
Wrap-Proxy1

〈l, ρ̂〉 = σ
(
l̂
)

wrap
(
l̂, ρ̂, σ, ς

)
=
(
l̂, σ, ς

)
Wrap-Proxy2
〈l, ρ̂′〉 = σ

(
l̂
)

wrap (l, ρ̂, σ, ς) =
(
l̂′, σ′, ς ′

)
wrap (l, ρ̂, σ, ς) =

(
l̂′, σ′, ς ′

)
Wrap-Existing
∃l̂ ∈ dom (σ) . 〈l, ρ̂〉 = σ

(
l̂
)

wrap (l, ρ̂, σ, ς) =
(
l̂, σ, ς

)
Figure 5.23 Sandbox encapsulation.

In contrast to other contract implementations, function contracts, dependent contracts,
and object contracts might also be applied to non-function and non-object values. In this
case, a primitive value gets wrapped in the contract proxy.

For example, having a function contract on a primitive value leads to two cases: either
the value is only used in a primitive operation or the value is used in a function application.
In the former case, the function contract gets removed before the primitive operation applies.
A contract violation is not possible. In the latter case, the evaluation will obviously get stuck
when using a non-function value in an application. However, as the domain contract gets
applied to the argument value a contract violation blaming the context may arise before
getting stuck.

5.4.6 Sandbox Encapsulation

To guarantee noninterference with the execution of a contract abiding host program, TreatJS
wraps all subject values and constructor arguments that are passed to a contract in a proxy
membrane. The proxy membrane protects the value and prohibits side-effecting operations.

To wrap a value, the evaluation rules use the built-in meta-function wrap (v, ρ, σ, ς), which
returns a secure value v̂ for a given value v. A secure value is either a constant or a location
to either an object wrapped in a sandbox proxy or an object defined inside of a secure
environment. Figure 5.23 shows its definition.
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Error 3 err += exn (sandbox violation)

Figure 5.24 Intermediate terms extension of λCON .

Get-Sandbox
〈l′, ρ̂〉 = σ (l) κ, ρ ` σ, ς, l′ [c] ⇓ σ′, ς ′, b wrap (b, ρ̂, ς, σ) = (b′, σ′′, ς ′′)

κ, ρ ` σ, ς, l [c] ⇓ σ′′, ς ′′, b′

Put-Sandbox
〈l′, ρ̂〉 = σ (l)

κ, ρ ` σ, ς, l [c] = v ⇓ σ, ς, exn

Figure 5.25 Evaluation rules for sandbox operations.

A primitive value (Rule Wrap-Constant), an error (Rule Wrap-Error), a contract
(Rule Wrap-Contract), and a contract (Rule Wrap-Constructor) are not wrapped and
secure by definition. To wrap a location that points to a native (non-function) object
(Rule Wrap-Object), the location is packed in a fresh sandbox proxy along with the current
sandbox environment. This packaging ensures that each further access to the wrapped
location has to use the current sandbox environment. If the location points to a function
object (Rule Wrap-Function) then the function closure gets redefined in our sandbox
environment, i.e., the function body is bound to the current sandbox environment. As this
step removes all existing bindings of a closure, it requires that needed values are imported
into the sandbox environment before. Function application on a sandboxed function object
is identical to a normal function application and does not need any special treatment.

Particular consideration must be given to the case when the value is a location that
points to a contract proxy (Rule Wrap-Delayed). In this case, the wrap operation must
reorganize the contract on the target value according to the selected evaluation semantics. It
continues with the wrap operation on the proxy’s target value and applies meta-function
mirror

(
l, l̂, σ, ς

)
to the original and the new secure location. The function mirrors the

contracts on l to l̂ according to the chosen evaluation semantics, which are defined in
Section 5.5.

The remaining rules handle wrapping of sandbox proxies. If the given location points to
a sandbox proxy for that sandbox environment (Rule Wrap-Proxy1) then the same location
is returned. If the location points to a proxy object that is wrapped in another sandbox
environment (Rule Wrap-Proxy2), then the contained target location gets re-wrapped in
the current sandbox environment. Finally, if there already exists a sandbox proxy for the
given location (Rule Wrap-Existing), then the location to the existing proxy gets returned.

Finally, we must define operations on sandbox proxies. To this end, we extend the set of
possible error messages by a sandbox violation. λCON errors now include a sandbox violation
exn that arises when violating a sandbox constraint. Figure 5.24 shows the extension.

Figure 5.25 shows the evaluation rules for operations on sandbox values. A property read
on a sandboxed location continues the operation on the proxy target and wraps the resulting
behavior in the current sandbox environment. This wrapping guarantees that after wrapping
a location, no unprotected (unwrapped) location is reachable from a given location.
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Lax
mirrorLax

(
l, l̂, σ, ς

)
=
(
l̂, σ, ς

)
Picky
〈l′, ι,Q〉 = σ (l) l̂′ /∈ dom (σ) σ′ = σ

[
l̂′ 7→

〈
l̂, ι,Q

〉]
mirrorPicky

(
l, l̂, σ, ς

)
=
(
l̂′, σ′, ς

)
Indy

〈l′, ι,Q〉 = σ (l)
`, ι1 6∈ dom (ς) ς ′ = `n ι J ι1 : ς l̂′ /∈ dom (σ) σ′ = σ

[
l̂′ 7→

〈
l̂, ι,Q

〉]
mirrorIndy

(
l, l̂, σ, ς

)
=
(
l̂′, σ′, ς ′

)
Figure 5.26 Mirroring of contracts.

A property assignment to a sandboxed object is not allowed and immediately signals a
sandbox violation. Sandbox violations should not be confused with contract violations as
the sandbox violation is neither the subject’s nor the context’s fault. Technically, it can be
seen as a subject violation of the current flat contract or contract constructor as it compares
to a programming error in the contract.

5.5 Monitoring Semantics

TreatJS provides three general monitoring semantics: Lax, Picky, and Indy. All three
semantics are derived from existing monitoring semantics in the literature [41, 10, 26].

In general, contract monitoring should not interfere with the contract abiding execution
of a host program. That is, as long as the host program does not violate any contract the
program execution should not be influenced by the insertion of a contract. For example, one
prominent question is whether the domain contract on an argument value should be present
while evaluating the range contract of a (dependent) function contract. To demonstrate this,
let’s consider function λf.f and contract definition E , where

E = ((Positive→ Positive)→ Test)

and Positive = flat (λx. (> x 0)) and Test = flat (λf. (= ((f 0)) 0)). Moreover, let’s apply
(λf.f) @`E to λx.x. Even though λx.x satisfies both contracts, Positive→ Positive and Test,
the range contract may violate the function contract on its subject value. More precisely, a
possible violation depends on the visibility of the contract inside Test predicate. Section 4.6
and Chapter 19 contain further examples and a more detailed discussion about this.

TreatJS reorganizes all contract monitors on values that flow into the sandbox of another
contract (predicate) according to the chosen monitoring semantics. In contrast to the
compatibility check (cf. Section 5.6), which drops contracts that should not be visible during
the evaluation of a predicate and which only applies to argument values of a function with a
function contract, the reorganization is implemented in the sandbox membrane and applies
to every external value used inside of a predicate.

Reorganizing contracts is implemented through the meta-functions mirrorLax

(
l, l̂, σ, ς

)
,

mirrorPicky

(
l, l̂, σ, ς

)
, and mirrorIndy

(
l, l̂, σ, ς

)
, all of which mirror contracts from a source
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Constraint 3 ϕ += [n [′ J ι (fork constraint)

Figure 5.27 Syntax extension of constraints.

object l to a sandbox internal object l̂. The functions are called on each wrap (b, ρ, σ, ς)
operation in a sandbox. Figure 5.26 shows the definition of the three functions.

The Lax meta-function (Rule Lax) ignores all contract monitors on l and simply returns
l̂ without any contract. Removing all contract monitors is correct as it guarantees that
a well-behaved program never gets blamed for a contract violation that happens when
evaluating predicate code. However, it is not complete as contract violations on values remain
unobserved inside of predicate code.

The Picky meta-function (Rule Picky) transfers the contract on l to l̂. This guarantees
that all contracts remain active when evaluating predicate code. However, this might wrongly
blame the context or the subject for violations that happen while evaluating predicate code.

The Indy meta-function (Rule Indy) first creates a new blame variable ι1 and a new
blame label ` which is associated with the current context κ before it asserts the contract in
respect to the new variable. A new fork constraint [n ` J ι1 (Figure 5.27) links the outcome
of ι1 to ι and `, whereby subject violations on ι1 are linked to ι and context violations on ι1
are linked to `. This guarantees that wrong uses (context violations) of l̂ inside of a predicate
will blame the predicate for violating the contract, whereas observed subject violations are
still linked to the original constraint set.

Technically, none of the terms mirrors the entire chain potentially nested contract
wrappers. Each evaluation copies only one contract on top of l. This is because the recursive
walk-through is already handled by the wrap (b, ρ, σ, ς) operation, as shown in Figure 5.23.

5.6 Compatibility

Compatibility of contracts is needed as the sequential assertion of intersection and union
contracts (cf. 5.4.4) mixes up contracts from different sides of an intersection. The issue
arises when contract monitors remain enabled during the evaluation of predicate code. To
illustrate the need for compatibility let’s consider function λf.f and contract definition E ,
where

E = ((Positive→ Positive)→ TestP) ∩ ((Negative→ Negative)→ TestN)

and Positive = flat (λx. (>x 0)), Negative = flat (λx. (<x 0)), TestP = flat (λf. (> (f 1) 0)),
and TestN = flat (λf. (< (f −1) 0)). Obviously, λf.f satisfies both intersected contracts,
(Positive→ Positive)→ TestP and (Negative→ Negative)→ TestN. But if we apply (λf.f) @`E
to λx.x and ignore the compatibility side condition, we may end up in a contract violation1.

This is because the argument value, here function λx.x, gets contracted with both
domain contracts, Positive→ Positive and Negative→ Negative. As both domain contracts
are function contracts (delayed contracts), they stay with the argument value until the
value is used in an application. If both contract monitors remain active when passing the
argument value to one of the predicates on the range, then each range contract violates

1 More precisely, the result depends on the chosen monitoring semantics (cf. Section 5.5)
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the domain contract of the other function contract. However, Positive → Positive and
Negative → Negative do not belong to the same operand of the intersection and therefore
Negative→ Negative must not be enforced in the body of TestP, and vice versa. But, this
only applies to predicates that belong to the same top-level contract and should not be
confused with the application of different monitoring semantics (cf. Section 5.5).

The solution is to drop all delayed contracts that belong to a different operand of an
enclosing intersection or union contract. We can determine this mismatch by recognizing
that the blame variable associated with Negative→ Negative belongs to the right side of the
intersection, whereas the blame variable of TestP belongs to the left side. So, the predicate
evaluation must check the compatibility of all delayed contracts on a subject value before
passing the value to the predicate. Non-compatible delayed contracts shall be removed.

To define compatibility, we first need to determine to which top-level assertion and to
which operand of an intersection or union a contract component belongs. To do so, we
compute the set of all possible paths from source blame labels ` to the blame variables ι of
the current contract. Depending on the chosen evaluation semantics, this may either be a
single path or a set of paths in case of the Indy semantics.

Each step in a path is drawn from a set Step ::= {◦, ↓, ‖} × ι, where ◦ stands for a
root label, ↓ for an indirection in a function, object, or flat contract, and ‖ for a parallel
observation of an intersection or union contract. Furthermore, we define a path π ∈ Step+

as a finite sequence of steps.

I Definition 1 (Path). Let π ∈ Ω ([, ς) be a path from [ to a blame label ` in ς. The set of
paths Ω ([, ς) ⊆ Step+ is inductively defined by:

Ω ([, ς) =



{(◦, `)} , [ = `

{π. (↓, ι) | π ∈ Ω ([′, ς)} , [′ J ι ∈ ς, [ = ι

{π. (↓, ι) | π ∈ Ω ([′, ς)} , [′ J ¬ι ∈ ς, [ = ι

{π. (↓, ιi) | π ∈ Ω ([′, ς)} , [′ J ι1 → ι2 ∈ ς, [ = ιi, i ∈ {1, 2}
{π. (‖, ιi) | π ∈ Ω ([′, ς)} , [′ J ι1 ∩ ι2 ∈ ς, [ = ιi, i ∈ {1, 2}
{π. (‖, ιi) | π ∈ Ω ([′, ς)} , [′ J ι1 ∪ ι2 ∈ ς, [ = ιi, i ∈ {1, 2}
{π. (‖, ι) | π ∈ Ω ([1, ς) ∪ Ω ([2, ς)} , [1 n [2 J ι ∈ ς, [ = ι

To demonstrate paths, let ς be the constraint that arises during the evaluation of
(
(λf.f) @`E

)
λx.x,

where
ς = · · · : ι1 J ι5 → ι6 : ι2 J ι3 → ι4 : ι0 J ι1 ∩ ι2 : ` J ι0 : ·

and ι3 is associated with Negative → Negative, ι5 with Positive → Positive, ι4 with TestN,
and ι6 with TestP. The order of constraints seems to be confusing at first, but it corresponds
to the evaluation order of contracts. The path sets of ι3, ι5 and ι6 look as follows:

Ω (ι3, ς) = {(◦, `) . (↓, ι0) . (‖, ι2) . (↓, ι3)}

Ω (ι5, ς) = {(◦, `) . (↓, ι0) . (‖, ι1) . (↓, ι5)}

Ω (ι6, ς) = {(◦, `) . (↓, ι0) . (‖, ι1) . (↓, ι6)}

The paths clearly indicate that both blame variables ι3 and ι6 belong to different operands of
an intersection of the same top-level contract, whereas ι5 and ι6 belong to the same operand.
It remains to define compatibility of paths.
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comp (π, ε) comp (ε, π)
`1 6= `2

comp ((◦, `1) .π2, (◦, `2) .π2)
comp (π1, π2)

comp ((◦, `) .π1, (◦, `) .π2)

[1 6= [2

comp ((↓, [1) .π1, (↓, [2) .π2)
comp (π1, π2)

comp ((↓, [) .π1, (↓, [) .π2)
comp (π1, π2)

comp ((‖, [) .π1, (‖, [) .π2)

Figure 5.28 Compatibility of paths.

Drop-Constant
drop (c, [, σ, ς) = (c, σ)

Drop-NoContract
〈w, ι,Q〉 6= σ (l)

drop (l, [, σ, ς) = (l, σ)

Drop-Compatible
〈w, ι,Q〉 = σ (l) compς ([, ι)

drop (w, [, σ, ς) = (σ′, l′) l′′ /∈ dom (σ) σ′′ = σ [l′′ 7→ 〈l′, ι,Q〉]
drop (l, [, σ, ς) = (l′′, σ′′)

Drop-Incompatible
〈w, ι,Q〉 = σ (l) ¬compς ([, ι) drop (w, [, σ, ς) = (l′σ′)

drop (l, [, σ, ς) = (l′, σ′)

Figure 5.29 Drop delayed contracts.

I Definition 2 (Compatibility of Paths). Two paths π0,π1 ∈ Step∗ are compatible (written
comp (π0, π1)) if one is a prefix of the other or if they have a common prefix and proceed on
a different indirections. Figure 5.28 shows the inductive definition of comp (π1, π2).

I Definition 3 (Compatibility of Blame Identifiers). Two blame identifiers [0,[1 are compatible
w.r.t. constraint list ς (written compς ([0, [1)) if the are compatible on all paths in ς:

compς ([0, [1) = ∀π0 ∈ Ω ([0, ς) , π1 ∈ Ω ([1, ς) .comp (π0, π1)

Paths that arise from different blame labels ` or that proceed on different indirections
are always compatible. Two paths with a common prefix are compatible if they proceed on
different indirection, i.e. their first difference must not be an intersection or union. Different
instantiations of the same contract are always compatible and can interact with each other.
Similarly, the domain and the range contract of a function contract or the properties of an
object contract can interact arbitrarily.

To drop non-compatible contracts the metafunction drop (v, [, σ, ς) recursively discards all
delayed contract monitors on l whose blame variable ι is not compatible with blame identifier
[. Figure 5.29 shows the evaluation rules for dropping non-compatible delayed contracts.

Rule Drop-NoContract returns target value l if no contract is available. Technically
we know that incompatible contracts of the same assertion are also on top. They are never
nested inside of a sandbox proxy so we can stop dropping if we find an object that is
not a contract proxy. Rule Drop-Compatible recursively proceeds with the compatibility
check on the proxies target value and re-asserts a compatible contract to the resulting
behavior. Rule Drop-Incompatible, in contract, drops an incompatible contract and returns
the behavior from the recursive lookup on the proxies target value.
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CS-Empty
µ |= ·

CS-Extension
µ |= ϕ µ |= ς

µ |= ϕ : ς

Figure 5.30 Constraint list satisfaction.

Notes

Compatibility of paths should not be confused with the implementation of different monitoring
semantics which also reorganizes contract monitors on values passed to predicate functions.
Compatibility is more general and handles the visibility of contracts inside of predicate
code. However, when using the Lax monitoring semantics, which always removes all contract
monitors on values that were passed to a predicate, no further compatibility check is required.
In all other cases, the compatibility check is strictly required to guarantee symmetry of
intersection and union contracts.

5.7 Blame Calculation

The dynamics in Figure 5.19, 5.20, 5.21, and 5.22 use constraints to create a structure for
computing contract violations according to the semantics of subject and context satisfaction,
respectively. To this end, each blame identifier [ is associated with a record that defines
the blame assignment for the contract related to [. The record contains two boolean fields,
[.context and [.subject. Intuitively, if [.context is false, then there is a context that does not
respect contract [ and may lead to negative blame for [. If [.subject is false, then the contract
associated with [ is not subject-satisfied and may lead to positive blame for [.

5.7.1 Constraint Satisfaction

Computing a blame assignment boils down to computing an interpretation for a constraint
list ς. An interpretation µ of a constraint list ς is a mapping from blame identifiers [ to
records of elements of B = {true, false}, such that all constraints are satisfied.

We order truth values by true @ false and write v for the reflexive closure of that
ordering. This ordering reflects the gathering of information with each execution step and
models the accumulated knowledge about the truth of a proposition. Contracts are counted
as true before its evaluation and false signals an observed violation of that proposition.

Formally, we specify the mapping by function

µ ∈ (L[M× {context, subject})→ B

where L[M ranges over blame identifiers [. Constraint list satisfaction and constraint satisfaction
are specified by a relation µ |= ς and µ |= ϕ. Figure 5.30 and Figure 5.31 specify the relation.
The rules apply a constraint mapping µ to boolean expressions over constraint variables.
This application stands for the obvious homomorphic extension of the mapping.

Every mapping satisfies the empty constraint list · (CS-Empty). The extension of a
constraint list ς with a constraint ϕ corresponds to the intersection of possible solutions on
both, ϕ and ς ′ (CS-Extension).

The indirection constraint (rule CT-Indirection) just links to another blame identifier.
Rule CT-Flat sets the subject satisfaction to the boolean interpretation τ(v) of the outcome



66 Contracts and Contract Monitoring

CT-Indirection
µ([.subject) w µ(ι.subject) µ([.context) w µ(ι.context)

µ |= ` J ι

CT-Flat
µ([.subject) w τ(v) µ([.context) w true

µ |= [ J v

CT-Inversion
µ([.subject) w µ(ι.context) µ([.context) w µ(ι.subject)

µ |= [ J ¬ι

CT-Function
µ([.subject) w µ(ι1.context ∧ (ι1.subject⇒ ι2.subject))

µ([.context) w µ(ι1.subject ∧ ι2.context)
µ |= [ J ι1 → ι2

CT-Intersection
µ([.subject) w µ(ι1.subject ∧ ι2.subject) µ([.context) w µ(ι1.context ∨ ι2.context)

µ |= [ J ι1 ∩ ι2

CT-Union
µ([.subject) w µ(ι1.subject ∨ ι2.subject) µ([.context) w µ(ι1.context ∧ ι2.context)

µ |= [ J ι1 ∪ ι2

CT-Fork
µ([.context) w µ(ι.context) µ([.subject) w true
µ([′.context) w true µ([′.subject) w µ(ι.subject)

µ |= [n [′ J ι

Figure 5.31 Constraint Satisfaction.

b of a predicate. Meta-function τ : LvM → B (Figure 5.32) translates the λCON values to
truth values B by stripping delayed contracts and interpreting the outcome according to
JavaScript’s definition of truthy and falsy. A flat contract never blames its context so that
[.context is always true.

Rule CT-Inversion determines the blame assignment for an object contract. Initially,
the subject of an object contract is responsible for returning property values according to
their specification, whereas the context is responsible for using all properties according to its
specification. This does not require a special constraint. However, after writing a property,
the responsibility for the value has changed. Now, the context is responsible for the value
that is later returned from the contracted object.

Rule CT-Function determines the blame assignment for a function contract [ from the
blame assignment for the argument and result contracts, which are available through ι1
and ι2. Let’s first consider the subject part. A function satisfies contract [ if it satisfies its
obligations towards its argument ι1.context and if the argument satisfies its contract then
the result satisfies its contract. The first part arises if the function is a higher-order function,
which may pass illegal arguments to its function-arguments. The second part is partial
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τ(v) =
{

false v ∈ {false, 0, ””, null, undefined}
true otherwise

Figure 5.32 Mapping values to truth values.

correctness of the function with respect to its contract. A function’s context (caller) satisfies
the contract if it passes an argument that satisfies contract ι1.subject and uses the result
according to its contract ι2.context. The second part becomes non-trivial with functions that
return functions.

Rule CT-Intersection determines the blame assignment for an intersection contract at [
from its constituents at ι1 and ι2. A subject satisfies an intersection contract if it satisfies
both constituent contracts: ι1.subject ∧ ι2.subject. A context, however, has the choice to
fulfill one of the constituent contracts: ι1.context ∨ ι2.context.

Dually, rule CT-Union determines the blame assignment for a union contract at [ from
its constituents at ι1 and ι2. A subject satisfies a union contract if it satisfies one of
the constituent contracts: ι1.subject ∨ ι2.subject. A context, however, needs to fulfill both
constituent contracts: ι1.context ∧ ι2.context, because it does not know which contract is
satisfied by the subject.

Finally, rule CT-Fork separates subject and context responsibility for a contract at [
and [′, whereas [ indicates the initial assertion of the contract and [′ indicates the context
in which the contracted value is used. A subject must satisfy its contract in all contexts
of use. However, the context at [ is not responsible for uses at [′. Therefore, [.context and
[′.subject are always true.

5.7.2 Solving Constraints

To determine whether a constraint list ς is a blame state (i.e., whether it should signal a
contract violation), we check if the constraint list ς maps any source-level blame label ` to
false. To this end, we define the semantics of a constraint list JςK as the least solution that
can be computed from ς.

I Definition 4 (Least Solution). The semantics JςK ∈ (L[M × {context, subject}) → B of a
constraint list ς is the least solution that can be computed for ς. That is, JςK |= ς and JςK ⊆ µ
for all µ |= ς.

I Definition 5 (Blame State). ς is a blame state for blame label ` iff

∃`.JςK(`.subject) ∧ JςK(`.context) w false.

ς is a blame state if there exists a blame label ` such that ς is a blame state for this label.

5.7.3 Introducing Blame

Figure 5.33 shows the evaluation rules for blame calculation in λCON . Blame calculation
starts immediately after evaluating a predicate. The term v@ιw checks the outcome w of
evaluating a predicate on v. All three rules update the constraint list with a new constraint
that maps the outcome of the predicate to blame variable ι before they check if the updated
constraint list in a blame state.
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Unit
ς ′ = ι J w : ς 6 ∃`.Jς ′K (`.context) w false 6 ∃`.Jς ′K (`.subject) w false

κ, ρ ` σ, ς, v@ιw ⇓ σ, ς ′, v

Context-Blame
ς ′ = ι J w : ς ∃`.Jς ′K (`.context) w false

κ, ρ ` σ, ς, v@ιw ⇓ σ, ς ′, -blame`

Subject-Blame
ς ′ = ι J w : ς ∃`.Jς ′K (`.subject) w false

κ, ρ ` σ, ς, v@ιw ⇓ σ, ς ′, +blame`

Figure 5.33 Evaluation rules for blame calculation.

If there exists no blame label ` with `.context w false or `.subject w false (Rule Unit)
then the evaluation returns the subject value and the updated constraint list. If `.context w
false (Rule Context-Blame) then ς ′ is a blame state for label `. Consequently, the
evaluation results in contract violation -blame` blaming the context for violating the contract
related to `. Otherwise, if `.subject w false (Rule Subject-Blame) then ς ′ is a blame state
for label ` resulting in a contract violation +blame` blaming the subject for violating the
contract related to `.

5.7.4 Constraint Graphs

To demonstrate blame calculation with constraints let’s consider function addOne = λx. (+ x 1)
and function contract E where

E = (Even→ Even) ∩ (Positive→ Positive)

and Even = flat (λx. (= (modx 2) 0)). Figure 5.34 shows the constraint graph after applying
addOne to the number value 1 and after applying addOne to the number value 2. Obviously,
addOne does not satisfy E , but as contract monitoring of higher-order functions is based on
testing we see this violation only in a particular situation.

In a first call, we apply addOne to the number value 1. While doing this, the left function
contract (Even→ Even) fails, blaming the context of that function for not calling addOne
with an even number, whereas the right function contract (Positive → Positive) succeeds.
Because the context of an intersection can choose to use the addOne either with positive or
even numbers, the intersection contract is satisfied. In the second call, we apply addOne to
the number value 2, which raises a contract violation blaming the subject (addOne) of the
intersection. In this situation, the first function contract fails blaming the subject for not
return an even number, whereas the right function contract succeeds. As the subject of an
intersection needs to fulfill both sides, the intersection contract fails, blaming the subject.

In our second experiment, we demonstrate the differences between Lax , Picky, and Indy
monitoring semantics. To this end, we consider function λf.f and contract F with

F = (Positive→ Positive)→ Test

and Positive = flat (λx. (> x 0)) and Test = flat (λf. (= ((f 0)) 0)). In all three experiments,
we apply λf.f to λx.x. During the evaluation, the domain contract (here Positive→ Positive)
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`

∩

→

Even Even

→

Positive Positive

(tt, ff) (tt, ff) (tt, tt) (tt, tt)

(ff, tt) (tt, tt)

(tt, tt)

`

... ∩

→

Even Even

→

Positive Positive

(tt, tt) (tt, ff)

(ff, tt)

(tt, tt)(tt, ff)

(tt, ff)

(tt, tt) (tt, ff)

Figure 5.34 Blame calculation of function addOne = λx. (+ x 1) contracted with (Even → Even)∩
(Positive → Positive). The top shows the constraint graph after applying addOne to the number
value 1 (first call). The bottom shows the extended graph after applying addOne to the number
value 2 (second call). Each node is a constraint and each edge references to a blame variable. The
labeling shows the values of the associated {context, subject} record.

gets applied to argument (λx.x) before the base contract on the range is applied to the
function’s return. Obviously, λx.x satisfies the domain contract Positive→ Positive but Test
violates the function contract on its subject value, and thus it may violate the contract on
λx.x.

Figure 5.35 shows the constraint graph that arises when using the Lax monitoring
semantics. The Lax monitor removes all contracts from λx.x before it uses the function as a
subject value. So, the function contract is not tested and no contact violation is reported. A
quick recap: undefined blame variable are assumed to be true, more precisely as {tt, tt}.

Figure 5.36 shows the constraint graph that arises when using the Picky monitoring
semantics. In Picky, contract monitors stay on all values that were passed to predicate
function. So, evaluating the predicate violates the function contract on λx.x because it applies
subject value to a non-positive number value. Thus, the function contract Positive→ Positive
reports a context violation. However, as λf.f is responsible for using the argument value
according to its specification, the outer function contract reports a subject violation.

Finally, Figure 5.37 shows the constraint graph that arises when using the Indy monitoring
semantics. Indy monitoring reorganizes all contracts on values that are passed to a predicate
function. As before, the function contract on λx.x remains active and reports a context
violation because the predicate applies the subject value to a non-positive number. However,
a new fork constraint separates the context and subject responsibility and forwards the
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Figure 5.35 Blame calculation using Lax monitoring semantics. The figure shows the callback
graph after applying function λx. (x 1) contracted with (Positive → Positive) → Test to λx.x. Each
node is a constraint and each edge references to a blame variable. The labeling shows the values of
the associated {context, subject} record.
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Figure 5.36 Blame calculation using Picky monitoring semantics. The figure shows the callback
graph after applying function λx. (x 1) contracted with (Positive → Positive) → Test to λx.x. Each
node is a constraint and each edge references to a blame variable. The labeling shows the values of
the associated {context, subject} record.

contract violation to a new blame label that is associated with the context in Test.
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Figure 5.37 Blame calculation using Indy monitoring semantics. The figure shows the callback
graph after applying function λx. (x 1) contracted with (Positive → Positive) → Test to λx.x. Each
node is a constraint and each edge references to a blame variable. The labeling shows the values of
the associated {context, subject} record.





6 Implementation

The calculus presented in Chapter 5 is implemented in TreatJS, a language embedded higher-
order contract system for full JavaScript. TreatJS is implemented as a library in JavaScript,
and all aspects are accessible through a contract API. The library can be deployed as a
language extension and does not require changes in the JavaScript run-time system.

The implemented is based on the JavaScript Proxy API [20] which was released with the
ECMAScript 6 (ES6) [33] specification in 2015. The API is implemented in most common
browsers, i.e., it is implemented in Firefox since version 18.0, in Chrome since version 49.0, and
in Edge since version 13. The proxy-based implementation guarantees full interposition for
the full JavaScript language and all code regardless of its origin, including dynamically loaded
code and code injected via eval. The implementation provides full browser compatibility (i.e.,
all browsers work without modifications as long as they support the JavaScript Proxy API).
No source code transformation or avoidance of JavaScript’s dynamic features is required.

6.1 Predicates

In TreatJS, predicates are specified by plain JavaScript functions. TreatJS does not impose
syntactic restrictions on predicates but expects them to terminate on all inputs. However,
predicates should not interfere with the execution of a contract abiding host program. Adding
a contract to a program should either result in the same outcome or a contract violation.

6.2 Sandboxing

TreatJS employs sandboxing to keep the predicate evaluation and the evaluation of constructor
functions apart from the normal program execution. It uses a limited version of DecentJS
(cf. Part II) to guarantee noninterference with the actual program execution.

Like DecentJS, the TreatJS-Sandbox encapsulates argument values in a proxy membrane
to enforce write-protection, and it withholds external bindings of functions by recompiling
the function inside of the sandbox. Unlike DecentJS, it does not provide effect logging and
each attempt to modify a value that is also visible to the host application gives rise to a
sandbox violation. Technically it would be possible to use a full blown sandbox like DecentJS,
but for efficiency reasons, most of its features remain disabled. More details about the
implementation of DecentJS and TreatJS-Sandbox can be found in Chapter 10.

6.3 Constraints

TreatJS uses constraints to link the outcome of a contract to the enclosing contract operators.
Constraints are implemented by special JavaScript objects that encompass the actual evalua-
tion state of the constraint along with a callback function that passes the internal state of
the constraint to the parent constraint, or at the top level to the assertion. Moreover, each
constraint objects provides one callback function per operand which accepts the evaluation
state from the associated sub-contracts. The callback function updates the internal state
and triggers an update of the parent constraint if the internal state has changed.
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6.4 Delayed Contracts

Delayed contracts checking is implemented using JavaScript Proxies [20, 33]. The assertion
of a delayed contract wraps the subject value in a proxy object. The handler for the proxy
contains the contract and implements a trap function to mediate the corresponding operation
on the subject value. It later asserts the contract when the value is used. No source code
transformation or change in the JavaScript run-time system is required.

The only special case is the assertion of a delayed contract to a primitive value. As the
proxy constructor requires an object as target, the primitive value cannot directly be used
as a proxy target. To overcome this limitation, TreatJS uses a dummy object in place of
the original subject value. The dummy object overrides the Symbol.toPrimitive1 and the
valueOf property with a function that returns the primitive value whenever the dummy
object is used in an operation that requires a primitive value.

6.5 On Non-interference

The ideal contract system should not interfere with the execution of application code as long
as the application does not violate any contract. That is, a contract abiding host program
should run as if no contracts where present. In general, we need to distinguish external and
internal non-interference of a contract system.

External Non-interference External non-interference arises from the interaction of the con-
tract system with the host program. Two sources for this are exceptions thrown by the
contract system and object equality.

Internal Non-interference Internal non-interference arises from the execution of unrestricted
predicate code in a base contract. This code may try to write to data that is visible to
the application, it may throw an exception, or it may not terminate.

Exceptions arise when a contract monitor observes a contract violation which is then reported
in the form of a contract exception. The host program can catch such an exception and thus
the host program become aware of the contract system.

Object equality becomes an issue if contract wrappers are not pointer equal to their
wrapped subject values. The problem arises if a subject value with and without a contract is
part of the same execution environment. If the wrapper is different (i.e., not pointer-equal)
from the wrapped subject value then each equality test between wrapper and subject or
between different wrappers for the same subject returns false instead of true.

Our implementation uses JavaScript proxies to implement contract wrappers. Unfortu-
nately, JavaScript proxies are always different from their wrapped target objects, and the
only safe way to change that is to modify the underlying JavaScript VM. Part III contains a
more detailed discussion of this problem and presents a solution for a transparent contract
wrapper.

Internal sources of interference are the execution of unrestricted JavaScript code in
the predicate of a base contract or the constructor function of a contract constructor.
Plain JavaScript functions implement predicates and constructor functions and use the full
expressive power of JavaScript. To guarantee noninterference with the application code,

1 Symbol.toPrimitive is a special JavaScript Symbol used to name a function-valued property that
converts an object to a corresponding primitive value. The function property is called whenever an
object is used in an operation that requires a primitive value.
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TreatJS executes predicates and constructor functions in a sandbox that restricts all write
operations to local objects and that captures all exceptions thrown by the function (except
other contract violations). Unfortunately, a non-terminating execution cannot be interrupted
as such a timeout cannot be implemented in JavaScript2.

6.6 Getting the Source Code

The implementation of TreatJS is available on the Web3. It comes along with a PLT Redex
model4 that implements a JavaScript core calculus with contracts and contract monitoring.

2 Most JavaScript engines like Node.js or Spidermonkey provide built-in functions to implement timeouts
and system interrupts. However, those functions are host extension and not part of the JavaScript
standard. Therefore we cannot rely on the presence of such a function.

3 https://github.com/keil/TreatJS
4 https://github.com/keil/Contract-Simplification

https://github.com/keil/TreatJS
https://github.com/keil/Contract-Simplification




7 Runtime Evaluation

This chapter reports on our experience with applying the TreatJS contract system to bench-
mark programs of the Google Octane 2.0 Benchmark Suite1. We primarily focus on the
influence of contracts on the execution time of a contract abiding host program.

7.1 Benchmark Programs

Unfortunately, there are no large real-world JavaScript applications with contracts that we
could use for benchmarking. So, we had to resort to an automatic generation and insertion
of contracts to existing benchmark programs.

As source programs, we use benchmark programs of the Google Octane 2.0 Benchmark
Suite. Octane measures a JavaScript engine’s performance by running a selection of complex
and demanding programs2 that range from performance tests to real-world web applications,
from an OS kernel simulation to a portable PDF viewer. Each program focuses on a specific
purpose, for example, function and method calls, arithmetic and bit operations, array
manipulation, JavaScript parsing and compilation, etc.

7.2 The Testing Procedure

To generate contracts for the benchmark programs we wrote a source-to-source compiler
that modifies a program by wrapping each function expression3 in an additional wrapper
function. In a first run, this wrapper function is used to install a proxy that, for each call of
the function, records the data types of the argument values and the type of the function’s
return. The recording distinguishes JavaScript’s basic data types: Undefined, Null, Boolean,
Number, String, Symbol, Function object, and Object. Afterward, this wrapper function is
used to assert a function contract built from the type records to each function expression4.

Furthermore, if a function’s record contains several entries with different types (for
example when using a function two times, once with a number and once with a string value),
then the wrapper installs an intersection or union contract. However, as some functions
return different types for the same input or change their return type for some inputs, not
each call confirms with the stated intersection or union contracts. In all such cases, we expect
that the contract system throws a contract violation.

Obviously, human developers would state more precise contracts that conform better to
the behavior fo that functions. However, as this are automatically generated contracts based
on simple type records, finding suitable contracts is not as easy as it seems.

1 https://developers.google.com/octane
2 https://developers.google.com/octane/benchmark
3 A function expression is a function declaration which is part of another expression or statement. In

contrast to a function statement, which is always defined in the current function body or in the global
scope, function expressions are only defined when the host expression evaluates.

4 We only consider function expressions as wrapping them did not change the order in which functions
are defined.

https://developers.google.com/octane
https://developers.google.com/octane/benchmark
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Benchmark Indy Picky Lax
time (sec) slowdown time (sec) slowdown time (sec) slowdown

Richards 19995 4941 18902 4671 18440 4556
DeltaBlue 28431 9910 26327 9176 27146 9462
Crypto 8 1 8 1 8 1
RayTrace 9510 3938 8411 3483 8550 3540
EarleyBoyer PositiveBlame PositiveBlame PositiveBlame
RegExp 6 1 6 1 6 1
Splay 162 57 156 55 158 56
SplayLatency 162 57 156 55 158 56
NavierStokes 4 1 4 1 4 1
pdf.js 27 5 25 4 25 4
Mandreel PositiveBlame PositiveBlame PositiveBlame
MandreelLatency PositiveBlame PositiveBlame PositiveBlame
Gameboy Emulator 1741 464 1596 425 1603 427
Code loading 9 1 9 1 9 1
Box2DWeb 2354 611 2213 574 2172 563
zlib 8 1 8 1 8 1
TypeScript PositiveBlame PositiveBlame PositiveBlame

Figure 7.1 Timings from running the Google Octane 2.0 Benchmark Suite. Column Indy gives
the execution time and the slowdown for running TreatJS with the Indy monitoring semantics.
Column Picky shows the time to complete a run with the Picky monitoring semantics, and column
Lax contains the time required for a run with the Lax monitoring semantics. All measurements
were taken from running TreatJS with the Pure safety level. The slowdown is in comparison with
Baseline execution time in Figure 7.5.

7.3 Evaluation Results

All benchmark programs were run on a benchmarking machine with two AMD Opteron
processors with 2.20 GHz and 64 GB memory. All example runs and measurements were
obtained with a modified SpiderMonkey JavaScript engine that treats proxies as transparent.
This is required to prevent any interaction between the contract system and the host
application.

All runtime measurements were taken from a deterministic run, which requires a predefined
number of iterations5, and by using a warm-up run. Both are predefined configurations in
Octane Benchmark Suite. All benchmark programs run between 5 and 8200 times.

Figure 7.1 contains the runtime value and the slowdown factor of all benchmark programs.
As expected, all runtime values increase when adding contracts. The benchmark programs
run between 1 and 10000 times slower than their baseline, which is listed in Figure 7.5. While
some programs like Richards, DeltaBlue, and RayTrace are heavily affected, others are almost
unaffected: Code loading, NavierStokes, pdf.js, and Splay, for instance.

However, the examples show that the runtime impact of contract assertion depends on
the program and on the particular value that is monitored. The impact of a contract strictly
depends on the frequency of its application. A contract on a heavily used function (e.g., in
Richards, DeltaBlue, or RayTrace) causes a significantly higher runtime deterioration than
a contract on a rarely used function. To illustrate this, Figure 7.2 lists some numbers of

5 Programs run either for one second or for a predefined number of iterations. If there are too few
iterations in one second, it runs for another second.
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Benchmark Contract Assert Predicate Membrane Callback

Richards 24 1599377224 935751200 935751208 935751200
DeltaBlue 54 2320357672 1341331212 1341331220 1341331212
Crypto 1 5 3 11 3
RayTrace 42 687244882 509234422 509234430 509234422
EarleyBoyer 21 201 133 141 136
RegExp 0 0 0 8 0
Splay 10 11624671 7067593 7067601 7067593
SplayLatency 10 11624671 7067593 7067601 7067593
NavierStokes 51 48335 39109 39117 39109
pdf.js 824 1770208 1394694 1394702 1394694
Mandreel 4 14 5 13 8
MandreelLatency 4 14 5 13 8
Gameboy Emulator 3206 141669753 97487985 97487993 97488305
Code loading 5600 34800 18400 18408 18400
Box2DWeb 20075 180252500 112751947 112751955 112820587
zlib 0 0 0 8 0
TypeScript 730 7315 3902 3910 4068

Figure 7.2 Statistic from running the Google Octane 2.0 Benchmark Suite (cont’d). Column
Contract shows the numbers of top-level contract assertions. Column Assert contains the numbers
of internal contract assertions whereby column Predicate lists the number of predicate evaluations.
Column Membrane shows the numbers of wrap operations and the last column Callback gives
the numbers of callback updates.

internal counters. The numbers indicate that the heavily affected benchmarks (Richards,
DeltaBlue, and RayTrace) contain a huge number of internal contract assertions. For example,
the Richards benchmark performs 24 top-level contract assertions (these are all calls to
Contract.assert), 1.6 billion internal contract assertions (including top-level assertions,
delayed contract checking, and predicate evaluation), and 936 million predicate executions.
The sandbox wraps about 936 million elements, and contract checking performs 936 million
callback update operations.

Expressed in absolute time spans, contract checking causes a runtime deterioration of
0.02ms for every single predicate check. For example, the contracted Richards requires 19995
seconds to complete and performs 935751200 predicate checks. Its baseline needs 4 seconds.
Thus, contract checking requires 19991 seconds. That gives 0.021ms per predicate check.

For better understanding, the number of wrap operations (column Membrane) is equal
to the number of predicate executions (column Predicate) plus eight. This is because we use
eight different predicates (each must be wrapped/decompiled once) during the execution of a
benchmark program and each predicate accesses only its argument. Moreover, the number
of callback updates is also very similar to the number of predicate checks. This is because
TreatJS triggers callback updates only if the internal state of a constraint has changed, i.e.,
we have at least one “initial” callback trigger for each predicate evaluation and one for each
failed contract to report the evaluation state to the enclosing contract.

The runtime values in Figure 7.1 also show the difference between the three monitoring
semantics, Indy, Picky, and Lax. Overall benchmarks, Indy is the most expensive semantics
because it applies a costly contract check on each predicate execution and it increases the
number of constraint updates by introducing the third party. The other monitoring semantics
have similar runtime impacts.

For sandboxing, the timings in Figure 7.3 shows the runtime difference between the
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Benchmark None Pure Strict
time (sec) ratio time (sec) ratio time (sec) ratio

Richards 15600 0.78 19995 1.00 19941 1.00
DeltaBlue 22771 0.80 28431 1.00 28959 1.02
Crypto 8 0.97 8 1.00 8 0.97
RayTrace 6123 0.64 9510 1.00 9506 1.00
EarleyBoyer PositiveBlame PositiveBlame PositiveBlame
RegExp 6 0.99 6 1.00 6 1.00
Splay 123 0.76 162 1.00 169 1.04
SplayLatency 123 0.76 162 1.00 169 1.04
NavierStokes 4 0.95 4 1.00 4 1.00
pdf.js 20 0.75 27 1.00 27 1.00
Mandreel PositiveBlame PositiveBlame PositiveBlame
MandreelLatency PositiveBlame PositiveBlame PositiveBlame
Gameboy Emulator 1302 0.75 1741 1.00 1768 1.02
Code loading 9 0.98 9 1.00 10 1.01
Box2DWeb 1792 0.76 2354 1.00 2406 1.02
zlib 8 1.00 8 1.00 8 1.00
TypeScript PositiveBlame PositiveBlame PositiveBlame

Figure 7.3 Timings from running the Google Octane 2.0 Benchmark Suite (cont’d). Column
None gives the execution time and the ratio for running TreatJS without sandboxing. Column
Pure shows the time to complete a run with the Pure safety level, and column Strict contains
the time required for a run with the Strict safety level. All measurements were taken from running
TreatJS with the Indy monitoring semantics. The ratio is in comparison to the Pure safety level.

different safety levels. The numbers indicate that without sandboxing6 (column None)
the benchmarks run approximately 0.16 times faster than with sandboxing (the difference
between None and Pure). The timings also show that Strict sandboxing is about 1.01 times
slower than Pure sandboxing (the difference between Strict and Pure).

6 The sandbox can safely be deactivated for the benchmarks without changing the outcome because our
generated base contracts are guaranteed to be free of side effects.
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Benchmark Full w/o Predicate w/o Callback
time (sec) time (sec) ratio time (sec) ratio

Richards 19995 13051 6943 (34.73%) 12655 396 (1.98%)
DeltaBlue 28431 18314 10117 (35.58%) 18790 -476 (-1.67%)
Crypto 8 8 0 (2.74%) 8 0 (0.40%)
RayTrace 9510 4601 4909 (51.62%) 4585 17 (0.18%)
EarleyBoyer - 57 - - 57 - -
RegExp 6 6 0 (0.16%) 6 0 (0.18%)
Splay 162 102 59 (36.77%) 104 -2 (-1.30%)
SplayLatency 162 102 59 (36.77%) 104 -2 (-1.30%)
NavierStokes 4 4 0 (7.43%) 4 0 (-0.44%)
pdf.js 27 17 10 (36.84%) 17 0 (0.94%)
Mandreel - 5 - - 5 - -
MandreelLatency - 5 - - 5 - -
Gameboy Emulator 1741 1003 737 (42.35%) 1001 2 (0.12%)
Code loading 9 9 0 (2.55%) 9 0 (-0.19%)
Box2DWeb 2354 1441 914 (38.81%) 1460 -19 (-0.80%)
zlib 8 8 0 (-1.08%) 8 0 (0.59%)
TypeScript - 2815 - - 2816 - -

Figure 7.4 Timings from running the Google Octane 2.0 Benchmark Suite (cont’d). Column
Full gives the execution time for running the benchmark without contract monitoring. Column
w/o Predicate shows the execution time and the ratio of a run without predicate execution, and
w/o Callback lists the values of a run without predicate execution and without callback updates.

Benchmark Proxy only Baseline
time (sec) ratio time (sec) ratio

Richards 728 11927 (59.65%) 4 724 (3.62%)
DeltaBlue 1089 17701 (62.26%) 3 1086 (3.82%)
Crypto 8 0 (0.84%) 8 0 (-1.22%)
RayTrace 241 4344 (45.67%) 2 239 (2.51%)
EarleyBoyer 57 - - 56 - -
RegExp 6 0 (-0.51%) 6 0 (0.27%)
Splay 8 96 (59.37%) 3 5 (3.34%)
SplayLatency 8 96 (59.37%) 3 5 (3.34%)
NavierStokes 4 0 (6.01%) 4 0 (0.90%)
pdf.js 7 10 (37.74%) 6 1 (1.96%)
Mandreel 5 - - 5 - -
MandreelLatency 5 - - 5 - -
Gameboy Emulator 53 949 (54.51%) 4 49 (2.80%)
Code loading 9 0 (2.41%) 9 0 (0.77%)
Box2DWeb 96 1364 (57.92%) 4 92 (3.90%)
zlib 8 0 (0.77%) 8 0 (-0.13%)
TypeScript 169 - - 23 - -

Figure 7.5 Timings from running the Google Octane 2.0 Benchmark Suite (cont’d). Column
Proxy only gives the execution time and the ratio for running the benchmark with a plain forwarding
proxy instead of the usual contract proxy. Column Baseline gives the baseline execution time and
the difference for running TreatJS without contract monitoring.
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In addition, Figure 7.4 and Figure 7.5 list the execution time of all benchmark programs
in different configurations, which are explained in the figure’s caption. The subsequent
detailed treatment of the runtime values splits the impact into its individual components.

In a first experiment, we turn off predicate execution and return true instead of the
predicate’s result. This splits the performance impact into the impact caused by the
contract system (proxies, callbacks, and sandboxing) and the impact caused by evaluating
predicates. From the runtime values we find that the predicate execution causes a slowdown
of approximately 25% overall benchmarks (the difference between column Full and column
w/o Predicate). The remaining slowdown is caused by the contract system.

Comparing the columns w/o Predicate and w/o Callback shows that callback updates
cause an overall slowdown of -0.1%7 in our experiment. This point includes the recalculation
of the callback constraints as explained in Section 5.7.1. In general, its impact is negligible
as TreatJS triggers constraint updates only if the internal state of a constraint has changed.

In the last experiment, we replace the usual contract proxy, which implements delayed
contract checking of function and intersection contracts, by a simple forwarding proxy that
only forwards the operation to the proxy’s target object. This shows the execution time
of the programs without predicate execution and without callback updates and splits the
overhead of the core contract system and the impact caused by introducing proxy objects.
Comparing the columns w/o Callback and Proxy only indicates that the core contract
system (constraint generation, bookkeeping of paths and contexts, introducing proxy objects)
decreases the execution time by approximately 34% overall benchmarks.

Finally, column Baseline shows the baseline execution time for running the benchmark
programs without contract monitoring. The runtime values also indicate that the sole
introduction of proxy objects without any functionality causes a slowdown of approximately
2% (difference between column Proxy only and column Baseline).

For the sake of completeness, Figure 7.6 shows the score values obtained from running the
benchmark programs. Google Octane usually reports its results in a score that is inversely
proportional to the measured runtime values.

7.4 Assessment

The runtime evaluation in this chapter applies TreatJS to benchmark programs drawn from the
Google Octane 2.0 benchmark suite. Google claims that Octane “measure[s] the performance
of JavaScript code found in large, real-world web applications, running on modern mobile
and desktop browsers”8. Unfortunately, it is pretty hard to measure the real runtime impact
of a contract system as there are no real-world applications with contracts that we could use.

To analyze the performance impact of a contract system we either need to add contracts
manually or we need to resort to an automatic insertion of contract. Whereas the first
way is not representative to serve as a basis for benchmarking, the latter one may end up
with contracts in artificial and unnatural places that would be avoided by an efficiency
conscious human developer. A contract may repeatedly check the same value or end up on
hot paths in a program. Moreover, the automatically inserted contracts come on top of the
already existing runtime checks of human developers. JavaScript developers manually test for

7 In several cases, the execution with contracts (or with a particular feature) is faster than without. All
such fluctuations are smaller than the standard deviation over several runs of the particular benchmark.

8 https://developers.google.com/octane/

https://developers.google.com/octane/
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Benchmark Baseline Indy Picky Lax None Strict
score score score score score score score

Richards 14561 2.9 3.06 3.14 3.71 2.9
DeltaBlue 20899 2.05 2.21 2.14 2.56 2.01
Crypto 13245 12763 13083 13288 13153 13196
RayTrace 38341 9.34 10.6 10.4 14.5 9.34
EarleyBoyer 4491 PositiveBlame PositiveBlame
RegExp 1506 1490 1496 1496 1498 1495
Splay 9142 145 148 148 190 139
SplayLatency 11505 373 379 375 533 325
NavierStokes 15704 14277 14478 14044 14890 14254
pdf.js 9511 1858 1950 1998 2526 1858
Mandreel 11640 PositiveBlame PositiveBlame
MandreelLatency 17616 PositiveBlame PositiveBlame
Gameboy Emulator 32236 60.4 66 65.6 80.7 59.5
Code loading 8192 7876 7857 7877 8077 7720
Box2DWeb 19096 27.7 29.5 30.1 36.3 27.2
zlib 41787 41582 41616 41753 41730 41787
TypeScript 13464 PositiveBlame PositiveBlame

Figure 7.6 Scores for the Google Octane 2.0 Benchmark Suite (bigger is better). Column
Baseline gives the baseline score for running TreatJS without contract monitoring. Column Indy
contains the scores for running TreatJS with the Indy monitoring semantics. Column Picky contains
the score values for running TreatJS with the Picky monitoring semantics, and column Lax shows
the scores from a run with the Lax monitoring semantics. Column None shows the scores without
sandboxing predicates and Column Strict lists the scores with Strict sandboxing.

undefined argument values and check the type of given values by using typeof and instanceof,
all of which become unnecessary when adding a contract that checks the argument.

Thus, the numbers that we obtain give an insight into the performance impact of our
contract implementation, but they cannot be used to predict the performance impact of
contracts on realistic programs with contracts inserted by human programmers.

From the runtime values, we find that the overall slowdown of contract checking vs.
a baseline without contracts amounts to a factor of 1508, approximately. The dramatic
decrease of the score values in the heavily affected benchmarks is simply caused by the
tremendous number of predicate checks that arise during a benchmark run. In relation to
this, the runtime impact of approximately 0.02ms per predicate is not very high. Lastly,
we have to say that contracts always extend the original program with checks and it is not
possible to have dynamic checks at runtime without affecting the execution time. All we can
do is to keep the impact as small as possible.
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8 Sandboxing JavaScript

JavaScript is used by 94.5%1 of all the websites. Most of them rely on third-party libraries
for feature extensions, to include advertisement, to show maps or calendars, or to connect
to a social network. As all these libraries are packed with the application code, the finally
executed code is a mix of third-party libraries and scripts from different origins. As not all of
these origins are equally trusted, the execution of these scripts should be isolated from one
another. However, some scripts must access the application state, and some may be allowed
to change it while preserving the confidentiality and integrity constraints of the application.

Unfortunately, the JavaScript language has no built-in namespaces or encapsulation
management: there is a global scope for variables, and functions and every loaded script has
the same authority. JavaScript developers benefit from JavaScript’s flexibility as it enables
them to extend the application state easily. On the other hand, once included, a script can
access and manipulate every value reachable from the global object.

This part presents the design and implementation of DecentJS, a language-embedded
sandbox for full JavaScript which enforces noninterference (integrity and confidentiality) by
run-time monitoring. DecentJS enables to run JavaScript functions in a configurable degree
of isolation with fine-grained access control. Each sandbox implements a transactional scope,
the content of which can be examined, committed, or rolled back. In particular, DecentJS
comes with the following features:

Language-embedded sandbox. DecentJS is implemented as a library in JavaScript, and all
aspects are accessible through a sandbox API. The library can be deployed as a language
extension and does not require changes in the JavaScript run-time system.

Full interposition. The proxy-based implementation guarantees full interposition for the
full JavaScript language (ES6 [33]) including all dynamic features (e.g., with, eval). No
source code transformation or prohibition of JavaScript’s dynamic features is required.

Shadow Values. Each sandbox implements a fresh scope to run code in isolation to the
application state. Proxies implement a membrane [20, 81] and make objects accessible
inside of a sandbox. Moreover, they provide effect logging and allow sandbox internal
modifications of that object without affecting the original value.

Transaction-based sandboxing. DecentJS provides a transactional scope that logs effects
for inspection. Effects reveal conflicts, differences, and changes with respect to another
sandbox or the global state. After inspection of the log, effects can be committed to the
application state or rolled back.

DecentJS is a spin-off of the language-embedded sandbox used in TreatJS.

8.1 Application Scenarios

This section considers two motivating examples that use DecentJS to guarantee non-
interference of JavaScript functions with the host application.

1 according to http://w3techs.com/, status as of March 2017
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8.1.1 TreatJS

TreatJS (Part I) is a higher-order contract system for JavaScript which enforces contracts
by run-time monitoring. TreatJS is implemented as a language-embedded system, and all
aspects of a contract can be specified using the full JavaScript language.

So, for example, the definition of a base contract typeNumber is built from a plain JavaScript
function which checks if its argument is a value of type number.

1 let typeNumber = Contract.Base(function (subject) {
2 return ((typeof subject) === "number");
3 }, "typeNumber");

Listing 8.1 Construction of a base contract.

In TreatJS, any function can be used as a predicate as any return value can be converted to
a boolean value2. The assertion of a base contract to a subject value applies the predicate
function to that value.

1 Contract.assert(1, typeNumber); // accepted, returns 1

Listing 8.2 Assertion of a base contract.

In general, the application of the predicate code should not interfere with the application
of the host program. A ground rule for contract monitoring says that the introduction of
contracts should not influence a contract abiding host program. However, a predicate may
try to write to an object that is visible to the application, it may throw an exception, or it
may not terminate.

To guarantee non-interference with the actual program execution, TreatJS evaluates
predicates in a sandbox. The sandbox removes all external bindings of the function closure
and wraps the argument value in a proxy membrane to prevent the value from unintended
modifications. A timeout could be used to stop a non-terminating execution, alas such a
timeout cannot be implemented in JavaScript.

More details about sandboxing of contracts may be found in Section 4.5.

8.1.2 Observer Proxies

An observer proxy (cf. Chapter 15) is an extension of the already existing proxy implementa-
tion. Its motivation is to restrict proxies to projections: a proxy that either behaves identical
to the target object or it restricts the behavior of the target object, for example by throwing
an exception or by implementing a membrane. Observer proxies are similar to Racket’s
chaperone [100] proxies. Such an observer can cause a program to fail more often, but in
case it does not fail it will behave in the same way as if no observer is present.

An observer handler provides an API similar to the API of the existing JavaScript proxies.
The constructor consumes a target object and a handler. Like before, the handler is a
placeholder object for optional trap functions to “observe” operations on the proxy object.
Figure 8.3 shows the implementation of a handler object that throws an exception when
reading an undefined property. Otherwise, it continues with the usual operation and returns
the property. A detailed explanation of the implementation is given in Section 15.1.

To guarantee noninterference with the actual program code, the observer needs to evaluate
all user-defined traps in a sandbox. This ensures that the handler does not manipulate the

2 JavaScript programmers speak of truthy and falsy about values that convert to true or false.
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1 let handler = {
2 get: function(target, name, receiver, continue) {
3

4 // checks for undefined property names
5 if(!(name in target))
6 throw new Error(‘Access to undefined property ${name}.‘);
7

8 // continue property lookup
9 continue(target, name, receiver, function inspect(result, callback) {

10 callback(result);
11 });
12 }
13 };

Listing 8.3 Implementation of a handler object.

proxy’s target object and that it does not perform any side effects other than the target
object would do. Moreover, the trap might be allowed to cause effects on a certain data
structure, for example when updating the evaluation state of a contract. The sandbox can
adjust this white-listing.

8.2 Getting the Source Code

The implementation of DecentJS is available on the web3.

3 https://github.com/keil/DecentJS

https://github.com/keil/DecentJS




9 Transaction-based Sandboxing: A Primer

Transactional sandboxing is inspired by the idea of transaction processing in database sys-
tems [111] and software transactional memory [96]. Each sandbox implements a transactional
scope whose internal state cannot be observed from the outside but whose effects can be
inspected, committed, or rolled back. This chapter provides a series of examples that explain
DecentJS’s facilities from a programmer’s point of view.

Isolation of code. A DecentJS sandbox can run JavaScript functions in isolation to the
application state. Proxies make external values visible inside of the sandbox, provide
effect logging, and handle sandbox internal modifications of that value.

Transactional scope. A DecentJS sandbox provides a transactional scope in which effects
are logged for inspection. Policy rules can be specified so that only effects that adhere to
the rules are committed to the application state, and others are rolled back.

9.1 Cross-sandbox Access

To demonstrate sandboxing, we consider different operations on binary trees, as defined by
Node and Leaf in Listing 9.1. Each node element consists of a value field, a left node, and a
right node. A leaf element consists only of a value field. Both prototype objects provide a
toString method that prints a string of that element. The implementation comes along with
some auxiliary functions defined in Listing 9.2. Function heightOf computes the height of a
node and function setValue replaces the value field of a node by its height, recursively.

As a running example, we perform operations on a binary tree consisting of one node
and two leaf elements. All value fields are initialized with 0.

1 let root = new Node(0, new Leaf(0), new Leaf(0));

Listing 9.3 Definition of a binary tree.

Calling toString on root returns a sequence of value fields.

1 print(root); // prints 0,0,0

Listing 9.4 Output of calling toString.

Now, instead of calling setValue directly, we use DecentJS to avoid unintended modifications
on root’s data structure and to observe caused effects. To this end, we first create a new
sandbox by calling the Sandbox constructor. The following code snippet instantiates a fresh
sandbox based on the current this object, which is the actual global object.

1 let sbx = new Sandbox(this, Sandbox.DEFAULT);

Listing 9.5 Construction of a new sandbox.

The sandbox constructor takes two arguments: a JavaScript object that acts as the global
object of the sandbox and a configuration object containing some preferences. The sandbox
object sbx now provides two possible uses:

Wrapping values. A value can be wrapped in the sandbox using the wrap method of a
sandbox object.

Calling function objects. Each sandbox provides a call, an apply, and a bind method with
the intuitive meaning known from Function.prototype.
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1 function Node (value, left, right) {
2 this.value = value;
3 this.left = left;
4 this.right = right;
5 }
6 Node.prototype.toString = function () {
7 return (this.left + "," + this.value + "," + this.right);
8 }
9 function Leaf(value) {

10 this.value = value;
11 }
12 Leaf.prototype.toString = function () {
13 return this.value;
14 }

Listing 9.1 Implementation of a Node element.

1 function heightOf (node) {
2 if (node instanceof Leaf) return 0;
3 else return (Math.max(heightOf(node.left),heightOf(node.right))+1);
4 }
5 function setValue (node) {
6 if (node instanceof Leaf) node.value=heightOf(node);
7 else {
8 node.value=heightOf(node);
9 setValue(node.left);

10 setValue(node.right);
11 }
12 }

Listing 9.2 Implementation of some auxiliary functions.
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When wrapping a value in a sandbox, a non-function object gets wrapped in a proxy
membrane which intercepts all write operations on the target object. A function object
gets redefined in our sandbox and wrapped in a special proxy that implements the sandbox
membrane on the argument values of that function.

The methods call, apply, and bind evaluate a function object inside of the sandbox.
These methods work similar to the methods known from Function.prototype, but require
a function object as their first argument. Internally, call, apply, and bind apply the wrap
function to their first argument before they proceed with calling the corresponding prototype
method. In the following example, we call the setValue inside of sandbox sbx to prevent the
original root node from unintended modifications by calling setValue.

1 sbx.call(setValue, this, root);

Listing 9.6 Calling a function in a sandbox.

Internally, the call method first decompiles and redefines the setValue function in the
sandbox before it applies the function to the root argument. This step erases all existing
bindings to the global scope and builds a new closure with respect to the sandbox environment.

The this and root value are wrapped in the sandbox membrane before they are forwarded
to the function. The “sandbox” proxy forwards reads to the proxy’s target object, whereas
writes produce a shadow value in the proxy. Subsequent reads on those values will use the
sandbox internal value. Clearly, getter and setter functions have to be decompiled as well.

Proxies implement this behavior. Their traps decide which value to use and when to
decompile a function. The proxy membrane ensures that all input and return values are also
wrapped in the membrane.

An exception with regard to decompiling is the access to a native function, for example
when calling Math.max in line 3 of Listing 9.2. Native objects must also be wrapped to enforce
write protection, but their methods cannot be decompiled because no string representation
exists. As recompiling is not possible the only alternative is to trust native functions or to
forbid them. Fortunately, most native methods do not produce side effects.

Let’s go back to our example. Not surprisingly, the root value has not been affected by
calling setValue in the sandbox.

1 print(root); // prints 0,0,0

Listing 9.7 Output of calling toString.

However, calling toString inside of the sandbox shows something different.

1 sbx.call(root.toString, root); // return 0,1,0

Listing 9.8 Output of calling toString in sbx.

9.2 Effects

Beyond access restrictions, each sandbox records the effects on all objects that cross the
sandbox membrane. The sandbox distinguishes between read effects, write effects, and call
effects. The resulting lists of effects are accessible through sbx.effects, sbx.readeffects,
sbx.writeeffects, and sbx.calleffects which contain all effects, read effects, write effects,
and call effects, respectively. Call effects are distinguished from read and write effects for
more detailed conflict detection.

All three lists offer special query methods to select only the effects of a particular object.
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1 let effects = sbx.effectsOn(this);
2 for(effect of effects) print(effect);

Listing 9.9 Selecting read effects on this.

The code snippet above prints a list of all effects performed on this, which is the global
object. The list shows read effects to heightOf, Math, and Leaf, as the following extract
demonstrates. It contains one entry for each has and get request during the execution of
setValue.

1 (#1) get [name=Leaf]
2 (#1) get [name=Math]
3 (#1) get [name=heightOf]
4 (#1) has [name=Leaf]
5 (#1) has [name=Math]
6 (#1) has [name=heightOf]

Listing 9.10 Read effects on this.

The first column shows a unique object identifier, the second shows the name of the effect,
and the last column shows the name of the requested parameter. The list does not contain
write effects to this, but there are write effects to root.

1 let writeeffects = sbx.writeeffectsOn(root);
2 for(effect of writeeffects) print(effect);

Listing 9.11 Selecting write effects on root.

1 (#4) set [name=value]

Listing 9.12 Write effects on root.

9.3 Inspecting a Sandbox

The sandbox internal state may diverge from the outside state for different reasons. Inspecting
the state of a Sandbox distinguish between differences, changes, and conflicts. A difference
indicates a sandbox-internal change of a value, whereas a change indicates a modification of
the outside value. A Conflict arises when comparing the effects of different sandboxes on the
same “outside” value.

9.3.1 Differences

A difference reveals a sandbox-internal modification of a value with respect to the corre-
sponding sandbox-external counterpart. Differences can be examined using an API that is
very similar to the effect API. There are flags to check whether a sandbox has differences as
well as iterators over them.

1 sbx.hasDifferences; // returns true

Listing 9.13 Checking for differences.

In our example, root’s values field has changed while calling setValue. The differences list
returns a list of all differences.

1 let differences = sbx.differences;
2 for(difference of differences) print(difference);

Listing 9.14 Selecting all differences.
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The result of the above query is the following list.

1 Difference: (#4) set [name=value]@SBX001

Listing 9.15 Differences in sbx.

Differences only fire on values that were written in the sandbox. In all other cases sandbox
and global environment return the same value.

9.3.2 Changes

A change, the dual of a difference, reveals a sandbox-external modification of a value that is
used inside of the sandbox. As before, there exist some query methods.

1 sbx.hasChanges; // returns false

Listing 9.16 Checking for changes.

Right now, there are not changes in the global state. To create some, we replace root’s left
leaf by a new subtree, as shown in the following example.

1 root.left = new Node(0, new Leaf(0), new Leaf(0));

Listing 9.17 Extension of root’s left leaf element.

Now, the flag indicates that same outside values has changed.

1 sbx.hasChanges; // returns true

Listing 9.18 Checking for changes (cont’s).

The list of changes reveals that root’s left field has been overwritten.

1 let changes = sbx.changes();
2 for(change in changes) print(change);

Listing 9.19 Selection all changes.

1 Change: (#4) get [name=left]@SBX001

Listing 9.20 Changes in sbx.

To sum up, changes can reveal modifications of the application state with respect to the
sandbox-internal value. However, this requires that 1. the value is accessed once and 2. the
sandbox remembers the value. For example, to recognize that root’s left field has been
changed, the sandbox must remember the “old” value that has been returned when computing
the height. So, calling toString inside of sbx does not show the modifications on root.

1 sbx.call(root.toString, root); // return 0,1,0

Listing 9.21 Output of calling toString in sbx after changing root’s left field.

Once accessed, a sandbox proxy caches the returned value, respectively its wrapped counter-
part. This remembering is required to have a consistent view inside of a sandbox. Otherwise,
a sandbox would lose all its modifications on a value when changing the access path to that
object. Moreover, this caching improves the efficiency as it prevents the target from frequent
accesses and the sandbox from frequent wrap operations.
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9.3.3 Conflicts

Our sandboxing approach allows us to have multiple sandbox instances, all of which may
operate on the same data structure. This may result in multiple identities of the same object
which exist in parallel in different sandboxes.

In contrast to differences (cf. Subsection 9.3.1) and changes (cf. Subsection 9.3.2), which
reveal differences between a sandbox and the application state, a conflict appears between
different sandboxes. They are more fine-grained and more efficient because the membranes
enables us to observe read and write operations on both sides.

Two sandbox membranes are in conflict if at least one sandbox modifies a value that is
afterward accessed by the other sandbox. The idea of conflicts corresponds to classical data
hazards from parallel executions. Our sandbox distinguishes two types of conflicts:

Read-after-Write
Write-after-Write

A third well-known hazard, Write-after-Read, is not handled because the hazard represents
a problem with concurrent executions and does not occur in sequential JavaScript. In case
a second sandbox writes a value that has been read by the first sandbox, then this write
operation is definitely behind the read operation and does not depend on the evaluation
order of a scheduler. The first sandbox has to terminate before the second sandbox starts.

To demonstrate conflicts, the following code snippet defines another auxiliary function,
appendRight, which adds a subtree to the right edge of the given node element.

1 function appendRight(node) {
2 node.right = new Node(’a’, new Leaf(’b’), new Leaf(’c’));
3 }

Listing 9.22 Definition of appendRight.

Furthermore, let’s instantiate another sandbox, sbx2.
1 var sbx2 = new Sandbox(this, Sandbox.DEFAULT);

Listing 9.23 Construction of a second Sandbox.

To recap, the global root object prints the string 0,0,0,0,0, whereas the root node in sbx
prints 0,1,0. Now, let’s evaluate appendRight in sbx2.

1 sbx2.call(appendRight, this, root);

Listing 9.24 Calling appendRight in a sandbox.

After calling appendRight, the root node in sbx2 prints the sequence 0,0,0,0,b,a,c.
Even though both sandboxes manipulate the same object, they are not in conflict. The

following code snippet shows how to test for conflicts.
1 sbx.inConflictWith(sbx2); // returns false
2 sbx2.inConflictWith(sbx); // returns false

Listing 9.25 Testing for conflicts.

This is because the call of appendRight is “behind” the call of setValue and because both
sandboxes write to different fields: sbx recalculates the value files, whereas sbx2 replaces the
right edge of it. However, this changes if we call setValue again.

1 sbx.call(setValue, this, root);

Listing 9.26 Calling setValue in a sandbox.
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Now, both sandboxes are in conflict because sbx2 writes to a field (right) that is afterward
accessed in sbx.

1 sbx.inConflictWith(sbx2); // returns true
2 sbx2.inConflictWith(sbx); // returns true

Listing 9.27 Testing for conflicts, cont’d.

As before, the sandbox enables a developer to select a list of conflicts.

1 let conflicts = sbx.conflictsWith(sbx2);
2 for(conflict of conflicts) print(conflict);

Listing 9.28 Selecting conflicts between sbx and sbx2

The call returns the following lines:

1 Conflict: (#4) get [name=right]@SBX001 - (#4) set [name=right]@SBX002

Listing 9.29 Conflicts between abs and sbx2.

The list shows a read-after-write conflict, where sbx reads the right field of an object that
has been written (and not committed) by sbx2.

9.4 Transaction Processing

After inspecting a sandbox, effects can be committed to the application state or rolled back.

9.4.1 Commits

A sandbox commit applies a sandbox-internal modification to the application state. Effects
may be committed on a per effect basis, in respect to an object, or all at once by calling
commit on the sandbox object. To recap, the global root object is still unmodified and prints
the sequence 0,0,0,0,0. Calling commit on sbx applies all modification to the global root
object.

1 sbx.commit();
2 print(root); // prints 0,0,0,1,0

Listing 9.30 Committing effects of a sandbox.

DecentJS enables fine-grained effect and commit-handling. So, a first sandbox can commit
its changes on value fields, whereas another sandbox can commit changes on edges. However,
there is no automatic check of conflicts or changes in front. Committing a value simply
overwrites the corresponding target object.

9.4.2 Rollbacks

Borrowing terminology from database systems, a rollback specifies an operation which
throws existing data manipulations away and returns a value to its previous configuration.
Transferred onto our sandbox, a rollback of an effect/object resets the value to its outside
counterpart.

For example, consider the root node in sbx2, which is still the tree that prints the sequence
0,0,0,0,b,a,c. Like commits, rollbacks are fine-grained. A developer can either rollback a
particular effect, all effects of an object, or all effects of a sandbox. Now, let’s rollback all
modifications in sbx2.
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1 sbx2.rollback();

Listing 9.31 Rollback effects of a sandbox.

Now, all local shadow values are removed and the outside configuration is visible.

9.4.3 Revert

A rollback undoes a particular effect and resets a field to its initial value. However, some
effects cannot be rolled back, for example when calling Object.freeze on a sandbox proxy.
To undo those operations, DecentJS provides a special revert operation. A sandbox revert
removes the entire shadow object of a wrapped value, and thus it undoes all effects at once.

The following code snippet reverts the root node in sbx2.

1 sbx2.revert();

Listing 9.32 Revert a sandbox to the outside state.

Now, all shadow values are removed, and the original value shines through. Moreover, a
revert also removes all cached values.

9.5 Pre-state Snapshot

The snapshot mode instructs the sandbox to produce local copies of values that were given to
the sandbox. The motivation is to have a snapshot of those values and to enable a sandbox
to rebase to that snapshot.

A snapshot can be generated by giving value to snapshot array, which is the third
argument of the sandbox constructor.

1 let sbx3 = new Sandbox(this, Sandbox.DEFAULT, [root]);

Listing 9.33 Construction of a new sandbox using the snapshot mode.

The sandbox can be used as usual. For example to call setValue:

1 sbx3.call(setValue, this, root);
2 sbx3.call(root.toString, root); // returns 0,1,0,2,0

Listing 9.34 Calling a function in a sandbox with enabled snapshot mode.

Now, to demonstrate the differences, let’s again extend root with a new subtree on the right.

1 root.right = new Node(0, new Leaf(0), new Leaf(0));

Listing 9.35 Extension of root’s right leaf element.

Unimpressed by this modification, subsequent rollback and revert operations return to the
initial state (the snapshot), and not to the outside counterpart.

1 sbx3.rollback();
2 sbx3.call(root.toString, root); // returns 0,1,0,2,0

Listing 9.36 Rollback effects of a sandbox with snapshot mode.

However, a special rebase method can update the snapshot upon request.
To sum up, the snapshot mode can be used to produce a snapshot states inside of a

sandbox and to return to this snapshot. However, the snapshot mode is more expensive than
normal shadow values and it should be used with caution.
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9.6 Transparent Sandboxing

The transparent mode is another special mode of our sandbox. It disables the construction of
shadow values inside of a sandbox and applies all modifications directly to the target object.
However, it still wraps all values that cross the sandbox boundary in a proxy membrane.
Hence, effect logging and all other sandbox features remain available. The transparent mode
still enables to investigate the effects of unfamiliar JavaScript code and to check for conflicts
between different sandboxes.

The transparent mode can be enabled by using the corresponding sandbox configuration.

1 let sbx4 = new Sandbox(this, Sandbox.TRANSPARENT});

Listing 9.37 Construction of a new sandbox using the transparent mode.

Like before, we can use sbx4 to execute JavaScript functions.

1 sbx4.call(setValue, this, root);
2 sbx4.call(root.toString, root); // returns 0,1,0,2,0

Listing 9.38 Calling a function in a sandbox with enabled transparent mode.

Now, after calling setValue, all modifications are immediately committed to the target object.
Printing the global root element reveals this.

1 print(root); // prints 0,1,0,2,0

Listing 9.39 Output of calling toString.

9.7 Reverse Sandboxing

This feature allows us to encapsulate sensitive data and to extend data structures with
transactional features instead of encapsulating JavaScript functions. For example, instead of
defining root directly, a developer can wrap it in a sandbox membrane.

1 let sbx5 = new Sandbox(this, Sandbox.DEFAULT);
2 let root = sbx5.wrap(new Node(0, new Leaf(0), new Leaf(0)));

Listing 9.40 Wrapping an object in a sandbox.

Now, the global root object is wrapped in a sandbox membrane identical to the value visible
inside of the sandbox. Proxies guarantee that the new root object performs as usual, for
example when calling setValue.

1 setValue(root);

Listing 9.41 Applying setValue to a sandbox object.

However, as root is a sandbox object, it enables a developer to use all sandbox features in
addition. After calling setValue we can inspect effects, check for changes and conflicts, and
revert to its initial status.





10 Sandbox Encapsulation

This chapter presents the design principles underlying DecentJS. Its design is inspired by
revocable references [20] and SpiderMonkey’s compartment concept [109].

Compartments create different memory heaps for different websites. All objects created
by a website are only allowed to touch objects in the same compartment. Proxies are used
as cross-compartment wrappers to make objects accessible in other compartments. The
motivation is to optimize garbage collection in the SpiderMonkey JavaScript engine.

Our sandbox adapts SpiderMonkey’s compartment concept and offers the possibility to
run code in isolation to the application state. Proxies implement a membrane and make
objects accessible inside of a sandbox. In addition, they provide effect logging and implement
features similar to transactional database systems.

10.1 Memory Safety

The implementation of DecentJS builds on two foundations: memory safety and reachability.
In memory safe programming languages, a reference can be seen as the transferable right

to access the public interface of an object. As JavaScript does not support pointer arithmetic,
a code fragment can only get access to a certain resource if it gets a reference to that resource.
In JavaScript, all resources are accessible via property read and property write operations1.
Thus, controlling those operations is sufficient to control the resources.

Central to our sandbox is the implementation of a sandbox membrane (proxy membrane)
on values that cross the sandbox boundary. The membrane guarantees that each visible object
inside of the sandbox is either an object that only appears inside or it is a wrapper for some
outside object. Moreover, it supplies effect monitoring and features identity preservation.

10.2 Shadow Objects

Our sandbox redefines the semantics of proxies to implement expanders [110], an idea that
allows a client-side extension of properties without modifying the proxy’s target.

A sandbox handler consists of two target objects: a proxy target object and a local shadow
object. The target object acts as a parent object for its proxy whereas the shadow object
gathers local modifications. A write operation always takes place on the shadow object. A
read operation either forwards the read to the proxy’s target object, if the property is not
locally modified, or it reads the property from the shadow object. Figure 10.1 illustrates this
situation, which is very similar to JavaScript’s prototype chain: the sandbox proxy is a child
object that inherits everything from its outside (parent) object, whereas modifications only
appear inside (locally) on the sandbox proxy.

Figure 10.2 demonstrates the membrane arising from the example in Chapter II. The
upper part shows the state that exists after calling setValue from Line 1 of Listing 9.6. Doing
this creates a proxy for each element of root. The proxy object forwards the write operations
to the shadow copies whose properties replace their target counterparts. All modifications
during the sandbox call are only visible inside of the sandbox.

1 Each variable access is a property access to JavaScript’s scope chain.
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handler

proxy target shadow
proxy.x;
proxy.y=1;
proxy.y;

handler.get(target, "x", proxy);
handler.set(target, "y", 1, proxy);
handler.get(target, "y", proxy);

target["x"];
target["y"]=1;
target["y"];

Meta-Level
Base-Level

Figure 10.1 Example of a sandbox operation. The property get proxy.x invokes the trap handler
.get(target, "x" ,proxy), which forwards the operation to the proxy’s target. The property set
proxy.y=1 invokes the trap handler.set(target, "y", 1, proxy), which forwards the operation
to the proxy’s shadow object. The property get proxy.y is then also forwarded to the shadow object.

The middle part shows the membrane after extending root’s left leaf by a new subtree
in line 1 of Figure 9.17. As we already modified root’s left leaf inside of the sandbox, the
sandbox remembers the previously read data structure and preserves a consistent view to
root.

The bottom part shows the membrane after calling appendRight in line 1 of Figure 9.24.
As we only replace root’s right leaf, the only wrapped value visible in the sandbox is root.
This is because proxies only arise on demand. The new node elements are not wrapped in a
proxy because they only exist inside of the sandbox.

10.3 Sandbox Scope

Apart from access restrictions, protecting the global state from uncontrolled access through
the sandbox membrane is fundamental to guarantee noninterference. To this end, DecentJS
relies on eval, which is nested in a with (sbxglobal) { /* body */ } statement. The with
statement places the sbxglobal on top of the current scope chain while executing body and
eval dynamically rebinds the free variables of its argument to whatever is in scope at its
call site. In this setup, which is related to dynamic binding [52], any property defined in
sbxglobal shadows a variable deeper down in the scope chain.

To guarantee noninterference, we employ a special proxy object in place of sbxglobal and
override the hasOwnProperty trap to always return true. When JavaScript traverses the scope
chain to resolve non-local variable access, this traversal calls the method hasOwnProperty
method when reaching the wrapped sandbox global. If the hasOwnProperty method always
returns true, then the traversal stops and the JavaScript engine sends all read and write
operations for free variables to the sandbox global. This way, we obtain full interposition,
and the handler has complete control over the free variables in body.

Figure 10.3 visualizes the nested scopes created during the execution of setValue from
Line 1 of Listing 9.6. The sandbox global sbxglobal is a wrapper for the actual global object,
which is used to access heightOf and Math. The function is nested in an empty closure
which provides a fresh scope for local functions and variables. This step is required because
JavaScript does not have standalone block scopes such as blocks in C or Java. Variables
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Figure 10.2 Example of shadow objects through a sandbox membrane. The figure shows the
binary trees created in Chapter 9. The left side shows the original, whereas the right side shows the
visible representation inside of a sandbox. The value set to the value field is the node’s content. The
left and right fields are represented as edges. Solid lines represent direct references to non-proxy
objects, whereas dashed lines represent indirect references and proxies. Dotted lines refer to the
corresponding target object. The dashed box symbolized the sandbox.

and named functions2 created by the sandboxed code end up in this fresh scope. This extra
scope guarantees noninterference for dynamically loaded scripts that define global variables
and functions. The "use strict"3 declaration in front of the closure puts JavaScript in strict
mode, which ensures that the code cannot obtain unprotected references to the global object.

Figure 10.4 shows the situation when instantiating different sandboxes during program
execution. Every sandbox installs its own scope with a sandbox global on top of the scope
chain. Scripts nested inside are defined with respect to the sandbox global. The sandbox
global mediates the access to the outside, for example to JavaScript’s global object. A new
sandbox always starts with an empty sandbox global. Values can be given to the sandbox by
defining a property with that value in the sandbox global.

2 Function created with function name() {/* body */}.
3 Strict mode requires that each use of this inside a function is only valid if either the function was

called as a method or a receiver object was specified explicitly using apply or call.
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let root = new Node(0, new Leaf(0), new Leaf(0));
let sbx = new Sandbox(this, {/* some parameters */});

with(sbxglobal) {

(function(){
"use strict";

function setValue (node){
if (node instanceof Leaf) node.value=heightOf(node);
else {

node.value=heightOf(node);
setValue(node.left);
setValue(node.right);

}
}

})();

}

Figure 10.3 Scope chain installed by the sandbox when loading setValue. The dark box
represents the global scope. The dashed line indicates the sandbox boundary and the inner box
shows the program code nested inside.

10.4 Function Recompilation

In JavaScript, a function “remembers the environment in which it was created.”4. In other
words, each function has access to all variables defined in their enclosing scope.

Thus, calling a wrapped function may still cause side effects through their free variables
(e.g., by modifying a variable or by calling another side-effecting function). To guarantee
noninterference, sandboxing must either erase all external bindings of a function or it has to
verify that a function is free of side effects. However, the letter one is not easy for JavaScript
as a simple read access might be the call of a side-effecting getter function.

To remove bindings from a function passed through the sandbox membrane DecentJS
decompiles the function and redefines it inside of the sandbox. Decompilation relies on
the standard implementation of the Function.prototype.toString method which returns a
string containing the source code of the function. To bypass potential tampering, we use
a private copy of Function.prototype.toString for this call. After this, we apply eval to
the resulting string to create a fresh variant of that function with respect to the sandbox
environment. As explained in Section 10.3, this application of eval is nested in a with
statement. Decompilation also places the "use strict" statement in front.

Functions without a string representation (e.g., native functions like Object or Array)

4 The Mozilla documentation, https://developer.mozilla.org/en/docs/Web/JavaScript/Closures

https://developer.mozilla.org/en/docs/Web/JavaScript/Closures
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Sandbox1 Sandbox2 Sandbox3

Global Scope

JSCodeJSCode JSCode

Figure 10.4 Nested sandboxes in an application. The outer box represents the global application
state containing JavaScript’s global scope. Each sandbox has its own global object and the nested
JavaScript code is defined w.r.t. to the sandbox global.

cannot be sanitized before passing them through the membrane. We can either trust these
functions or rule them out. To this end, DecentJS may be provided with a white-list of
trusted function objects. However, every function remains wrapped in a sandbox proxy to
mediate property access.

In addition to normal functions calls, the access to a property that is bound to a getter
or setter function needs to decompile the function before its execution.

10.5 Policies

A Policy is a statement that specifies a set of allowed or forbidden operations. For example,
a policy can grant read access to a certain resource or it may restrict possible access paths
on an object. Most existing sandbox systems come with a facility to define policies.

DecentJS does not provide policies in the manner known from other systems. It only
provides the mechanism to implement a fresh (empty) scope and to load values into that
environment. However, it provides other techniques to handle fine-grained access control:

A new sandbox always starts with an empty global object and does not contain references
to the outside world. So, the sandboxed code runs in full isolation. Read access to a
certain resource can be granted by binding the values when instantiating a new sandbox.
A sandbox does not cause side effects. Thus, write operations inside are fine. Write
access can be granted by committing effects or by using the transparent mode.
Proxies can easily implement more fine-grained access permission. Each value that crosses
the sandbox membrane can be wrapped in another membrane. This membrane can
be used to implement access control. For example, one could use Access Permission
Contracts [64] to restrict the access on objects or Revocable References [20] to revoke
access to the outside world.

This construct enables that scripts run without restrictions and without recognizing the
sandbox.

10.6 DOM Updates

The Document Object Model (DOM) is an API for manipulating HTML and XML documents
that underlie the rendering of a web page. The DOM provides a representation of the
document’s content, and it offers methods for changing its structure, style, content, etc.
In JavaScript, this API is implemented using special objects, reachable from the document
object.
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The DOM API is not part of the JavaScript standard. Browsers usually extend the
runtime environment with a document object to grant access to the HTML or XML document.
As most JavaScript libraries access the DOM, it is required to make the DOM available when
running library code in a sandbox. However, wrapping the document interface object in a
sandbox membrane leads to a number of limitations:

By default, DOM nodes are accessed by calling query methods like getElementById on
the document object. Effect logging recognizes these accesses as method calls, rather than
as operations on the DOM.
All query functions are usually special native functions that do not have a string represen-
tation. Decompilation is not possible so that using a query function must be permitted
explicitly through the whitelist.
A query function must be called as a method of an actual DOM object implementing the
corresponding interface. Thus, DOM objects cannot be wrapped like other objects. They
require a special wrapping that calls the method on the correct receiver object. While
read operations can be managed in this way, write operations must either be forbidden,
or they affect the original DOM.
With unrestricted write operations, it would be possible to insert new <script> elements
in a document which loads scripts from the internet and executes them in the normal
application state without further sandboxing.

Thus, the document object cannot be wrapped for safe use inside of a sandbox. To overcome
this limitation, DecentJS provides guest code access to an emulated DOM instead of the
real thing. We rely on dom.js5, a JavaScript library emulating a full browser DOM, to
implement a DOM interface for scripts running in the sandbox. Like the normal DOM, the
emulated DOM is merged into the global sandbox object when executing libraries. The
sandbox internal DOM can be accessed and modified at will. A special membrane mediates
all operations and performs effect logging on all the DOM elements. This construct provides
the following features:

The sandbox provides an interface to the sandbox internal DOM and enables the host
program to access all aspects of the DOM. This interface can control the data visible to
the library program.
A host program can load a page template before evaluating library code. This template
can be an arbitrary HTML document, like the host’s page or a blank web page. As most
libraries operate on non-blank page documents (e.g., by reading or writing to a particular
element) this template can be used to create an environment.
Library code runs without restrictions. For example, guest-code can introduce new
<script> elements to load library code from the internet. These libraries are loaded and
executed in the sandbox as well.
All operations on the interface objects are recorded. Effects can be examined using an
API similar to the standard effect API (cf. Section 9.2).
The host program can perform a fine-grained inspection of the document tree (e.g., it can
search for changes and differences). The host recognizes newly created DOM elements,
and it can transfer content from the sandbox DOM to the DOM of the host program.

5 https://github.com/andreasgal/dom.js/

https://github.com/andreasgal/dom.js/
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10.7 Discussion

Noninterference

DecentJS guarantees integrity and confidentiality. The default “empty” sandbox guarantees
to run code in full isolation from the rest of the application, whereas the sandbox global can
provide protected references to the sandbox. Proxy objects redirect all write operations to
local replications such that sandbox code runs without noticing the sandbox.

Strict Mode

DecentJS runs program code in JavaScript’s strict mode to prohibit unqualified this pointers6
to the global object. Moreover, JavaScript’s strict mode enables to use eval and other
dynamic features without any restrictions.

Unfortunately, the strict mode semantics is slightly different from the non-strict mode
semantics. Assuming strict mode may lead to a dysfunctional code in the sandbox if the
code fragment requires non-strict JavaScript. However, this assumption is less restrictive
than prohibiting JavaScript’s dynamic features, as it is done by other techniques.

Function Decompilation

Decompiling a function closure reopens the closure and removes all external binding of that
function. Decompilation may change the meaning of a function as it rebinds the function to
whatever is in the scope when defining the function. To preserve the semantics it requires
that all free variables are imported into the sandbox. The new closure formed within the
sandbox may be closed over variables defined in that sandbox.

Unfortunately, this is a manual task. Only “pure functions”7 can be decompiled without
further attention. As every property read may be the call of a side-effecting getter function,
decompilation is unavoidable to guarantee noninterference.

Native Functions

Decompilation requires a string that contains the source code of that function. Unfortunately,
calling the standard toString method from Function.prototype does not work for all functions.

A native function does not have a string representation. Thus, native functions must
either be trusted or forbidden. White-listing of functions can be adjusted.
The Function.prototype.bind method of a JavaScript function creates a new bound
function with the same body. Even though both functions contain the same body, the new
function loses its string representation. Decompilation of that function is not possible.
However, as bound values are not determinable, this behavior is expected.

Object, Array, and Function Initializer

In JavaScript, some objects can be constructed using a literal notation (initializer notation).
Prominent examples are objects (using {}), array objects (using []), and function objects

6 An unqualified this pointer arises from calling a function closures with an undefined this value. In
this case, this points to the global object.

7 A pure function is a function that only maps its input into an output without causing any observable
side effects.
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(using the named or unnamed function expression, e.g. function () {}). Using the literal
notation circumvents all restrictions the sandbox imposes on the Object, Array, and Function
constructors. The new objects are directly created from that constructors.

Unfortunately, it is not possible to intercept the construction of objects using the literal
notation. All created objects inherit directly from the prototype objects Object.prototype,
Array.prototype, and Function.prototype. Thus, using the literal notation enables unpro-
tected read access to the corresponding prototype objects.

However, we will never get direct access to the prototype object itself (using Object
.getPrototypeOf can be prevented) and we are not able to modify the prototype object.
Writes to a JavaScript object always affect the object itself and are never forwarded to the
prototype object.

Even though the prototype objects only contain uncritical functions, a global (not
sandboxed) script could add sensitive data or a side-effecting function to one of the prototype
objects. Thus it can bypass access to unprotected data or a side-effecting function. DecentJS
only guarantees full-noninterference if all scripts are packed in a sandbox and only the
sandbox itself is allowed to be placed in the host application.

Function Constructor

The built-in function constructor Function creates a new function object based on the
given arguments. In contrast to function statements and function expressions, the function
constructor ignores the surrounding scope and always returns a function that is created in
the global scope.

To prevent this, DecentJS never grants unwrapped access to JavaScript’s global Function
constructor even if the constructor is whitelisted as a safe native function. A special wrapping
surrounding the Function constructor intercepts the construction process and creates a new
function with respect to the sandbox global.
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This chapter reports on our experience with applying DecentJS to benchmark programs
from the Google Octane 2.0 Benchmark Suite1. Octane measures a JavaScript engine’s
performance by running a selection of complex and demanding programs. Each program
focuses on a special purpose, for example, function and method calls, arithmetic and bit
operations, array manipulation, JavaScript parsing, and compilation, etc.

11.1 The Testing Procedure

For benchmarking, we wrote a new start script that loads and executes each benchmark
program in a fresh sandbox. By setting the sandbox global to the standard global object, we
ensure that each benchmark program can refer to properties of the global object as needed.
As sandboxing wraps the global object in a membrane, it mediates the interaction of the
benchmark program with the global application state.

All benchmarks were run on a machine with two AMD Opteron processors with 2.20 GHz
and 64 GB memory. All example runs and measurements reported in this paper were obtained
with the SpiderMonkey JavaScript engine. All runtime measurements were taken from a
deterministic run, which requires a predefined number of iterations2, and by using a warm-up
run.

11.2 Results

Table 11.1 contains the runtime values for all benchmark programs in two different configu-
rations and Table 11.2 lists the readouts of some internal counters.

As expected, the runtime increases when running a benchmark in a sandbox. While
some programs like EarleyBoyer, NavierStrokes, pdf.js, Mandreel, and Box2DWeb are heavily
affected, others are only slightly affected: Richards, Crypto, RegExp, and Code loading, for
instance. Unfortunately, DeltaBlue and zlib do not run in our sandbox: DeltaBlue attempts
to add a new property to the global Object.prototype. This modification is only visible
inside of the current sandbox and not to objects created using literal notation. The zlib
benchmark uses an indirect call3 to eval to write objects to the global scope, which is not
allowed by the ECMAScript 6 (ECMA-262) specification. Another benchmark, Code loading,
also uses an indirect call to eval. A small modification makes the program compatible with
the normal eval, which can safely be used in our sandbox.

In the first experiment, we turn off effect logging, whereas in the second one it remains
enabled. Doing so separates the performance impact of the sandbox system (proxies and
shadow objects) from the impact caused by the effect system. From the running times,
we find that the sandbox itself causes an average slowdown by a factor of 8.01 (overall
benchmarks).

For better understanding, Table 11.2 lists some numbers of internal counters. The
numbers indicate that the heavily affected benchmarks (RayTrace, pdf.js, Mandreel, or

1 https://developers.google.com/octane
2 Programs run either for one second or a predefined number of iterations. If there are too few iterations

in one second, it runs for another second.
3 An indirect call invokes the eval function by using a name other than eval.

https://developers.google.com/octane
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Benchmark Baseline Sandbox w/o Effects Sandbox w Effects
time (sec) time (sec) slowdown time (sec) slowdown

Richards 9 12 1.33 15 1.67
DeltaBlue 9 - - - -
Crypto 18 42 2.33 88 4.89
RayTrace 9 74 8.22 498 55.33
EarleyBoyer 19 202 10.63 249 13.11
RegExp 6 9 1.5 12 2
Splay 3 19 6.33 33 11
SplayLatency 3 19 6.33 33 11
NavierStokes 3 56 18.67 61 20.33
pdf.js 7 113 16.14 778 111.14
Mandreel 8 151 18.88 483 60.38
MandreelLatency 8 151 18.88 483 60.38
Gameboy Emulator 4 17 4.25 26 6.50
Code loading 8 11 1.38 12 1.50
Box2DWeb 4 145 36.25 1,302 325.50
zlib 7 - - - -
TypeScript 26 61 2.35 328 12.62

Total 135 1.082 8.01 4,401 32.60

Table 11.1 Timings from running the Google Octane 2.0 Benchmark Suite. The first column
Baseline gives the baseline execution times without sandboxing. The column Sandbox w/o
Effects shows the time required to complete a sandbox run without effect logging and the relative
slowdown (Sandbox time/Baseline time). The column Sandbox w Effects shows the time and
slowdown (w.r.t. Baseline) of a run with fine-grained effect logging.

Box2DWeb) perform a huge number of effects. In absolute times, raw sandboxing causes
a runtime deterioration of 3µs per sandbox operation (effects) (11µs with effect logging
enabled). For example, the Box2DWeb benchmark requires 145 seconds to complete and
performs 132,722,198 effects on its membrane. Its baseline needs 4 seconds. Thus, sandboxing
takes an additional 141 seconds. Hence, there is an overhead of 1µs per operation (10µs with
effect logging enabled).

To allow a better comparison of the benchmark results, Table 11.3 shows the score values
reported by the benchmark suite. Octane reports its result in terms of a score that is inversely
proportional to the runtime of a program. Moreover, the score value of the SplayLatency and
MandrealLatency benchmark measures the interrupts of the garbage collection subsystem.
As the benchmarks penalize long interrupt with a lower score, the score value indicates a
more frequent and a more uneven use of the garbage collection.

11.3 Memory Consumption

Table 11.4, Table 11.5, and Table 11.6 show the memory consumption recorded when running
the Google Octane 2.0 Benchmark Suite. Table 11.4 shows the memory usage when running
the benchmark programs without sandboxing, whereas Figure 11.5 and Table 11.6 shows the
memory usage of a run with raw sandboxing and of a run with effect logging.

The numbers indicate that there is no significant increase in the memory consumed. For
example, the difference of the virtual memory size ranges from -126MByte to 40MByte for a
raw sandbox run and from -311MByte to +158MByte for a full run with fine-grained effect
logging. Obviously, effect logging slightly increases the memory consumption as it requires
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Benchmark Objects Effects Size of Effect List
Reads Writes Calls

Richards 14 492073 20 2 5
DeltaBlue - - - - -
Crypto 21 4964248 29 2 11
RayTrace 18 51043282 26 3 8
EarleyBoyer 33 4740377 42 8 6
RegExp 16 296995 23 2 6
Splay 16 1635732 23 2 8
SplayLatency 16 1635732 23 2 8
NavierStokes 15 4089 21 2 6
pdf.js 36 77665629 59 8 21
Mandreel 31 39948598 50 2 21
MandreelLatency 31 39948598 50 2 21
Gameboy Emulator 28 1225935 42 2 16
Code loading 12417 107481 50 2 13
Box2DWeb 28 132722198 38 2 14
zlib - - - - -
TypeScript 23 27518481 34 2 9

Total 12743 383949448 530 43 173

Table 11.2 Numbers from internal counters. Column Objects shows the numbers of wrapped
objects and column Effects gives the total numbers of effects. Column Size of Effect List lists
the numbers of different effects after running the benchmark. Column Reads shows the number
of read effects distinguished from the number of write effects (Column Writes) and distinguished
from the number of call effects (Column Calls). Multiple effects to the same field of an object are
counted as one effect.

to store all the effects. For the effect-heaviest benchmark Box2D we find that the virtual
memory size rises from 157MByte (raw run) to 197MB (full run with effect logging).

To sum up, the results from the tests indicate that there is no significant increase in
memory consumption, but the garbage collector runs more frequently. Unfortunately, more
frequent garbage collector calls impact the total execution time of a benchmark program.

11.4 Notes

We use Octane as it aims to measure a JavaScript engine’s performance by running a selection
of complex and demanding programs found in large, real-world web applications. We claim
that it is the heaviest kind of benchmark for such a sandbox system.

The numbers that we obtain give an insight into the performance of our sandbox imple-
mentation. However, the current setting needs to place the whole benchmark in a closure.
Because there are currently no large programs that allow fine-grained sandboxing the numbers
cannot be used to predict the performance impact of a more fine-grained use by human
programmers.
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Benchmark Sandbox w/o Effects Sandbox w Effects Baseline

Richards 4825 4135 6552
DeltaBlue - - 6982
Crypto 2418 1131 5669
RayTrace 1387 179 9692
EarleyBoyer 954 767 10345
RegExp 911 1139 1535
Splay 1268 713 8676
SplayLatency 3630 1818 12788
NavierStokes 989 890 15713
pdf.js 434 63 8182
Mandreel 346 106 9102
MandreelLatency 2518 526 12526
Gameboy Emulator 6572 4780 31865
Code loading 7348 6000 9136
Box2DWeb 453 50.1 18799
zlib - - 42543
TypeScript 4554 792 12588

Table 11.3 Scores for the Google Octane 2.0 Benchmark Suite (bigger is better). Block Sandbox
w/o Effects contains the score values of a raw sandbox run without effect logging, whereas block
Sandbox w Effects contains the score values of a full run with fine-grained effect logging. The
last column Baseline gives the baseline scores without sandboxing.

Benchmark Baseline
Virtual Resident Text/Data Shared

size size size size

Richards 134 19 109 5
DeltaBlue - - - -
Crypto 225 105 201 6
RayTrace 148 31 124 5
EarleyBoyer 500 363 476 6
RegExp 226 108 202 6
Splay 535 416 511 6
SplayLatency 535 416 511 6
NavierStokes 141 24 116 5
pdf.js 316 169 292 6
Mandreel 305 182 280 6
MandreelLatency 305 182 280 6
Gameboy Emulator 194 62 170 6
Code loading 268 142 243 6
Box2DWeb 157 53 132 5
zlib - - - -
TypeScript 473 369 448 6

Table 11.4 Memory usage when running the Google Octane 2.0 Benchmark Suite without
sandboxing. Column Virtual shows the virtual memory size, column Resident shows the resident
set size, column Text/Data shows the Text/Data segment size, and column Text/Data shows
the Text/Data segment size. All values are in MByte.
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Benchmark Sandbox w/o Effects
Virtual Resident Text/Data Shared

size diff. size diff. size diff. size diff.

Richards 135 +1 20 +1 110 +1 5 0
DeltaBlue - - - - - - - -
Crypto 232 +7 106 +1 208 +7 6 0
RayTrace 148 +0 31 +0 124 +0 6 +1
EarleyBoyer 374 -126 272 -91 350 -126 6 0
RegExp 224 -2 107 -1 200 -2 6 0
Splay 466 -69 352 -64 422 -89 6 0
SplayLatency 466 -69 352 -64 422 -89 6 0
NavierStokes 134 -7 18 -6 109 -7 5 0
pdf.js 274 -42 123 -46 250 -42 6 0
Mandreel 263 -42 133 -49 239 -41 5 -1
MandreelLatency 263 -42 133 -49 239 -41 5 -1
Gameboy Emulator 188 -6 60 -2 163 -7 6 0
Code loading 259 -9 138 -4 234 -9 6 0
Box2DWeb 197 +40 97 +44 172 +40 6 +1
zlib - - - - - - - -
TypeScript 424 -49 325 -44 428 -20 6 0

Table 11.5 Memory usage of a raw sandbox run without effect logging. Column Virtual shows
the virtual memory size, columnResident shows the resident set size, column Text/Data shows the
Text/Data segment size, and column Text/Data shows the Text/Data segment size. Sub-column
size shows the size in MByte and sub-column diff. shows the difference to the baseline (Sandbox
size - Baseline size) in MByte.

Benchmark Sandbox w Effects
Virtual Resident Text/Data Shared

size diff. size diff. size diff. size diff.

Richards 167 +33 54 +35 142 +33 6 +1
DeltaBlue - - - - - - - -
Crypto 209 -16 93 -12 184 -17 6 0
RayTrace 181 +33 63 +32 157 +33 6 +1
EarleyBoyer 189 -311 86 -277 195 -281 6 0
RegExp 224 -2 104 -4 200 -2 6 0
Splay 424 -111 321 -95 399 -112 6 0
SplayLatency 424 -111 321 -95 399 -112 6 0
NavierStokes 134 -7 19 -5 109 -7 5 0
pdf.js 272 -44 116 -53 248 -44 6 0
Mandreel 347 +42 160 -22 323 +43 6 0
MandreelLatency 347 +42 160 -22 323 +43 6 0
Gameboy Emulator 214 +20 84 +22 190 +20 6 0
Code loading 262 -6 139 -3 238 -5 6 0
Box2DWeb 191 +34 72 +19 166 +34 6 +1
zlib - - - - - - - -
TypeScript 631 +158 493 +124 607 +159 6 0

Table 11.6 Memory usage of a full run with fine-grained effect logging. Column Virtual shows
the virtual memory size, columnResident shows the resident set size, column Text/Data shows the
Text/Data segment size, and column Text/Data shows the Text/Data segment size. Sub-column
size shows the size in MByte and sub-column diff. shows the difference to the baseline (Sandbox
size - Baseline size) in MByte.
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12 Proxies, Membranes, and Contracts

As the implementation of proxies and membranes is already discussed in Section 3, we will
just briefly recall the use of proxies to implement contract systems. Proxies implement
contracts in Racket’s contract framework [45, Chapter 7], in Disney’s JavaScript contract
system Contracts.js [30], in JSConTest2 for JavaScript [64], and in the TreatJS [68] contract
framework for JavaScript.

When implementing contracts, proxies are important to state properties that cannot
be checked immediately: for example invariants on objects or pre- and postconditions on
functions and methods. To demonstrate contract checking, consider the following function
plus which accepts two arguments of type number and promises to return a value of type
number.

1 let plus = Contract.assert(function plus(x, y) {
2 return (x+y);
3 }, Contract.Function([typeNumber, typeNumber], typeNumber));

Listing 12.1 Example of a delayed contract.

We call a function contract delayed, because asserting it to a function does not immediately
signal a contract violation. Asserting a function contract amounts to asserting the domain
contract to the arguments of each call of the function and asserting the range contract to the
return of each call.

The assertion of a delayed contract may be implemented by wrapping the function in a
proxy. The proxy handler contains the contract and implements a trap to mediate the use of
the function and to assert its contract when the function is used. The following example
sketches the implementation of a delayed contract assertion that checks for number values.

1 let handler = {
2 apply: function (subject, thisArg, argumentsArg) {
3

4 // check if arguments are of type number
5 if(!(typeof argumentsArg[0] === ’number’)) throw new TypeError();
6 if(!(typeof argumentsArg[1] === ’number’)) throw new TypeError();
7

8 // call the target function
9 const result = Reflect.apply(subject, thisArg, argumentsArg);

10

11 // check if result is of type number
12 if(!(typeof result === ’number’)) throw new TypeError();
13

14 // return the result
15 return result;
16 }
17 };
18 let plus = new Proxy(function plus(x, y) {
19 return (x+y);
20 }, handler);

Listing 12.2 Sketch Implementation of a Delayed Contract.

The proxy installs a handler that intercepts all function applications. It’s apply trap gets
invoked when the proxy is called as a function. The arguments passed to the apply method
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are the target object (function plus in this example), the this argument for the call, and an
array-like object containing the arguments for the call.

The trap method first checks the argument values before it proceeds with the usual
operation. Later it checks the value that returns from forwarding the call to the target object.
In both cases, it throws a type error if either an argument or the return is not a number
value. The addition of this contract does not change the normal program execution of a
well-behaved program.

Both contract systems, Racket and TreatJS, implement delayed contracts on objects and
functions with specific wrapper objects, Racket’s chaperones and impersonators [100] and
JavaScript proxies [20], respectively. Dynamic contract monitoring then uses the proxy object
in place of the target object. However, as it cannot delete or rewrite existing references to
the original function, target and proxy object may occur in the same execution environment.
But, this may change the semantics of a program, and thus it violates a ground rule for
monitoring: a monitor should never interfere with the execution of a program conforming to
the monitored property.

12.1 Opaque Proxies

A proxy is an object that mediates access to an arbitrary target object. The objective of
introducing a proxy is to extend or restrict the functionality of the underlying object. Proxies
are widely used to perform resource management, to access remote objects, to impose access
control [20, 64], to implement contract checking [100, 41, 30, 68], to restrict the functionality
of an object [100], to enhance the interface of an object [110], to implement dynamic effects
systems [64], for meta-level extension, for behavioral reflection, for security [2], and for
concurrency control [80, 5, 12]. Chapter 3 gives a detailed introduction to JavaScript Proxies.

Ideally, a program should not be able to distinguish a proxy from a non-proxy object, i.e.,
running a program with an interposed proxy should lead to the same outcome as running
the program with the target object unless the proxy imposes restrictions. For that reason,
the JavaScript proxy API [20, 33] does not provide a function that checks whether an object
is a proxy or not, it does not offer traps for all possible operations on proxies, and it places
several restrictions on traps to avoid breaking object invariants [20].

Unfortunately, the JavaScript Proxy API treats a proxy of a target object as a new object
different from its target. Each proxy has its own identity, different from all other proxy or
non-proxy objects. The definition of object equality [33, Section 7.2.13] says: If x and y are
the same object value, return true.

This means that proxies are opaque with respect to object equality. However, given opaque
proxies an equality test can be used to distinguish a proxy from its target, as demonstrated
in the following example:

1 let target = { /* some object */ };
2 let handler = { /* empty handler */ };
3 let proxy = new Proxy (target, handler);
4 proxy === target; // evaluates to false

Listing 12.3 Distinguish opaque proxies.

Even though target and proxy behave identical, the equality test fails. The double and triple
equal operators (==, ===) only evaluate to true if and only if both operands refer to the same
object. Thus, in a program that uses object equality, the introduction of a proxy can lead
to a program failure (without even invoking an operation on the proxy) when a proxy is
directly used in place of the target object.
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12.2 A Discussion of different Use-Cases

JavaScript proxies are used for Disney’s JavaScript contract system Contracts.js [30], to
implement higher-order contracts in TreatJS [68], to enforce Access Permission Contracts [64],
for security [2], as well as for revocable references and membranes [20].

However, JavaScript proxies introduce a subtle problem. Because a target object may
have multiple proxy objects, which are all different from the target, a single target object
may obtain multiple identities. Object equality for opaque proxies works well under the
assumption that proxies and their target objects are never part of the same execution
environment. However, it turns out that this assumption is not always appropriate. One
prominent use case is the implementation of a contract system.

Unfortunately, the current proxy implementation is committed to particular use cases
which makes it hard to adapt it to uses with different requirements. We now discuss three
such use cases (object extension, access-restricting membranes, and contract checking) in
the context of the JavaScript Proxy API [20, 33], identify their shortcomings, and propose a
solution.

12.2.1 Use Case: Object Extension

A common use case of proxies is to extend or redefine the semantics of the underlying target
object. For example, a handler may throw an error instead of returning undefined for a
non-existing property, it may implement an expander [110] to allow client-side extension of
properties without modifying its origin, or it may redirect different operations to different
targets (for example to implement placeholders or shadow objects).

In this cases, the proxy behaves different to the targets and using the proxy may lead to
a completely different outcome. As proxy and target object implement different semantics,
they should not be confused.

12.2.2 Use Case: Access Control

JavaScript proxies implement access control wrappers like revocable references [20, 81], the
motivating use case for membranes (cf. Section 3.2). The idea of a revocable reference is
to only ever pass a proxy to an untrusted piece of code, e.g., a mashup. Once the host
application deems that the mashup has finished its job, it revokes the reference which detaches
the proxy from its target. Identity preserving membranes extend this method recursively to
all objects reachable from a target object.

Opaque proxies are suitable for implementing revocable references and identity preserving
membranes, but not strictly required. The JavaScript proxy API is tailored to uses where
access is strictly compartmentalized. The host application only sees the original objects
whereas the mashup only sees proxies. Furthermore, the implementation of revocable
references and identity preserving membranes ensures that there is at most one proxy for
each original object. For this reason, each compartment has a consistent view where object
references are unique.

Unlike opaque proxies, membranes based on transparent proxies are always identity
preserving and do not need a map to ensure this. However, a map that reveals transparent
proxies would improve the runtime and space efficiency as it prevents the system from
re-wrapping the same object again and again.
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12.2.3 Use Case: Contracts

Proxies already implement contracts in JavaScript [30, 68]. Contracts impose restrictions a
programmer regards as the correct execution of a program. For example, a contract may
require a function to be called with a particular type or an object property to contain positive
numbers.

During maintenance, the programmer may add contracts to sensitive data, for example
to the arguments of a function. In this scenario, the program execution ends up in a mix
of objects with and without contracts. Furthermore, the same object may appear with and
without a contract in the same execution environment, and different proxies may implement
different contracts for the same target. As the original object may be compared with
its contracted counterpart (e.g., by using ===) some equality comparisons would flip their
outcome and thus change the semantics of a program.

Consequently, the Racket implementation provides transparent proxies [100], which are
indistinguishable (in respect to their structural equality) from their target object, recursively.

The following example shows the desired behavior of hypothetical transparent proxies in
JavaScript.

1 var proxyA = new Proxy(target, handler);
2 var proxyB = new Proxy(target, handler);
3 var proxyC = new Proxy(proxyB, handler);
4 (target==proxyA); // returns false, should be true
5 (target==proxyC); // returns false, should be true

Listing 12.4 Desired behavior of a transparent proxy.

Transparent proxies are not distinguishable from their base target. Comparing a transparent
proxy with an object should lead to the same outcome as comparing the object with the
proxies base target.

1 (proxyA==proxyB); // returns false, should be true
2 (proxyA==proxyC); // returns false, should be true

Listing 12.5 Desired behavior of a transparent proxy (cont’d).

Also, comparing two transparent proxies of the same target should lead to the same outcome
as comparing the proxies base targets.

12.2.4 Assessment

Neither the opaque nor the transparent proxy implementation can be labeled as right or
wrong without further qualification. Each implementation is appropriate for a particular use
case and leads to undesirable behavior in another use case.

Transparent proxies can safely be used to implement a revocable membrane. The
implementation can use a weak map that consequently returns the proxy if a key value fits.
There is no need to wrap a proxy again. In contrast, a contract system requires transparent
proxies by default. Otherwise, it would influence the normal program execution. But contract
systems might also need to distinguish different contracted versions of the same target object.
Completely indistinguishable proxies avoid this.

It is also clear that the behavior of equality is not something that should be left to the
whim of the programmer. For example, equality on objects should be an equivalence relation,
which means that the equality operations == and === must not be trapped (see also [21]).
Thus, the current state of affairs in JavaScript is entirely justified, but it is not suitable to
implement contract systems. If a program uses object equality, then adding contracts based
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on opaque proxies may change the behavior of well-behaved programs. Hence, we explore
some alternative designs that would suit all use cases.

12.3 An Analysis of Object Comparisons

This section considers whether the contract implementation based on opaque proxies affects
the meaning of realistic programs. To this end, we consider a typical maintenance scenario
where a programmer adds a contract to a particular piece of code. Its objective is to count and
classify proxy-object comparisons with regard to their influence on the program execution.

For example, consider the following function isTarget which checks it’s argument to be
target.

1 let target = { /* some object */ };
2 function isTarget(arg) {
3 return arg===target;
4 }

Listing 12.6 Definition of function isTarget.

Furthermore, let Q be some delayed contract and consider function cmp which takes two
parameters, f and x, and which returns the result of applying f to x.

1 let cmp = Contract.assert(function cmp(f, x) {
2 return f(x);
3 }, Contract.Function([Contract.Function([Q],typeBoolean), Q], typeBoolean);

Listing 12.7 Definition of function cmp.

Now, let’s use cmp as follows:

1 cmp(isTarget, target);

Listing 12.8 Using cmp to compare target.

Calling cmp wraps isTarget and target in a proxy that enforces the given delayed contracts
Contract.Function([Q],typeBoolean) and Q. Unfortunately, wrapping isTarget does not
affect the bound variables in the function’s environment. However, inside of cmp, obj is
wrapped in a proxy and calling f(x) may wrap it one more time in Q. Thus, comparing
arg==target yields false instead of true, the result before installing the contract on cmp.

Consequently, if a program uses object equality, then adding contracts based on opaque
proxies may change the behavior of well-behaved programs.

12.3.1 The Experiment

To obtain the number of object comparisons that occur during a program execution we
instrument the JavaScript engine to count and classify proxy-object comparisons.

Our model is a recursive object wrapper that simulates a simple contract system by
wrapping the arguments of a function. The proxy handler solely forwards the operation to the
target object. To adapt existing implementations, we use an identity-preserving membrane
that maintains aliasing and avoids chains of nested proxies.

The subject programs are again taken from the Google Octane 2.0 Benchmark Suite [85].
A preceding source-to-source compiler generates a new file for each function expression in
a benchmark program, each of which wraps exactly one function in our contract system.
Separated programs enable us to reason about different proxies from different contracts.
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After compiling, the modified benchmark programs were executed in a special engine
that treats proxies as transparent. While not influencing the normal program execution, our
engine counts and classifies all object-proxy comparisons. All numbers were taken from a
deterministic run, a predefined setting which requires a fixed number of iterations, and by
using a warm-up run.

12.3.2 A Classification of Proxy-Object Comparisons

Before discussing the results, we introduce a classification of object comparisons (equality
tests). We only consider comparisons between two objects, either of them needs to be a
proxy. All other comparisons are not influenced by introducing proxies.

Let t be an arbitrary target object and M(t) a target wrapped in a membrane M .
Type-I: M(t1) == t2 or M1(t) == M2(t2). All equality tests between a proxy object

and another object, which might be either a native (non-proxy) object or a proxy-object
from another membrane. Tests in this class always return false when using opaque
proxies, whereas the result of a transparent proxy depends on the proxy’s target.

Type-Ia: t1 6= t2. Subclass of Type-I, where the proxy’s target object t1 is different from
the other object or the other proxy’s target object, respectively. Opaque and transparent
proxies yield the same result, false, but for different reasons.

Type-Ib: t1 = t2. Subclass of Type-I, where the proxy’s target object t1 is identical to the
other object or the other proxy’s target object. An equality test of this type yields false
when using opaque proxies, whereas transparent proxies yield true.

Type-II: M(t1) == M(t2) All equality tests between two proxy objects from the same
membrane. Tests in this class always return false when using opaque proxies with-
out an identity-preserving membrane. With an identity-preserving membrane, or with
transparent proxies, the result depends on the proxy’s target.

Type-IIa: t1 6= t2. Subclass of Type-II, where the proxies’ target objects differ. Opaque
and transparent proxies yield the same result, false, but for different reasons.

Type-IIb: t1 = t2. Subclass of Type-II, where the proxies’ target objects are the same.
An equality test in this class yields false when using opaque proxies without an identity-
preserving membrane, whereas transparent proxies yield true. Opaque proxies from an
identity-preserving membrane also yield true.

Identity preserving membranes use weak maps to manage already wrapped objects. This
serves two purposes: First, it avoids re-wrapping of a proxy in the same membrane and,
second, it can be used to reflect object identity. This gives better performance because the
VM does not need to evaluate an entire chain of proxies to reach the base target object and
we do not have multiple proxies for the same target.

In this setting, we count equality tests between two proxy objects from different membranes
in category Type-I, because different contracts implement different membranes and the
mechanism that preserves the identity does not work when using different membranes.

12.3.3 Numbers of Comparisons involving Proxies

The table in Figure 12.1 summarizes the numbers of equality tests involving proxy objects.
Equality tests between two native objects and all tests involving primitive values (e.g.,
boolean values, numbers, null, or undefined) are omitted from the result because they are
not influenced by introducing proxy objects. Benchmark programs not listed in this table



Proxies, Membranes, and Contracts 123

Benchmark Type-I Type-II
Total Type-Ia Type-Ib Type-IIa Type-IIb

DeltaBlue 144126 29228 1411 33789 79698
RayTrace 1075606 0 0 722703 352903
EarleyBoyer 87211 8651 6303 53389 18868
TypeScript 801436 599894 151297 20500 29745

Table 12.1 Number of equality tests involving object proxies. Column Total contains the total
number of comparisons. Column Type-I lists the comparisons of Type-I, divided into the two
subclasses Type-Ia and Type-Ib. Column Type-II shows the number of Type-II comparisons,
divided into the subclasses Type-IIa and Type-IIb.

do not contain equality tests with a proxy object. However, they still contain comparisons
between native objects or between objects and primitive values1.

The numbers cover all different types of comparisons: equal (==), not equal (!=), strict
equal (===), and strict not equal (!==). Therefore, the term “the result is true” is used in a
generalized sense and means that equal and strict equal yields true, whereas not equal and
strict not equal yields false. Not covered by the numbers are internal object comparisons
of build-in native objects, for example, weak maps and weak sets, that use object equality
when adding or deleting an entry. However, none of the benchmarks uses one of them. The
numbers show that a total number of 159011 equality tests (sum of Type-Ib) flip from true
to false when replacing objects with their opaque proxies.

The numbers also show that an identity-preserving membrane ensures that 481214 equality
tests (sum of Type-IIb) evaluate correctly. However, if it is not possible to use a membrane
that preserves the identity, then further 830381 equality tests would flip from true to false.

Furthermore, the obtained numbers show that 1468154 equality tests (sum of all Type-Ia
and Type-IIa numbers) are not influenced by introducing opaque proxies. However, the
reason for this result is different. An opaque proxy compared with a native object (or with
another opaque proxy object) yields false because the proxy is not equal to the other object,
whereas a transparent proxy generates false because the proxy’s target object is not equal
to the other object (to the other proxy’s target object).

12.4 Summary

The evaluation shows that a significant number of object comparisons fails when mixing
opaque proxies and target objects in the same execution environment, for example when
implementing a contract system with opaque proxies. A total number of 159011 (640225
without identity preserving membranes) out of 2108369 equality tests flip their outcome and
may, therefore, influence the normal program execution. Identity preserving membranes will
minimize this number, but they are not able to prevent programs from incorrect evaluations.

However, the numbers also show that the majority of object comparisons is not affected
by opaque proxies. Reason for the small number of flipped equality tests is the careful
handling of object comparisons in JavaScript. Results from other experiments show that
approximately 6% of all equality tests involve two objects. The other comparisons either
check an object against null, test for undefined values or compare primitive values.

1 JavaScript developers frequently use the double and triple equality operator to test for null and
undefined.
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JavaScript provides two kinds of comparison operators: Strict equality operators (e.g. ===
and !==) and type-converting equality operators (e.g. == and ==). Furthermore, there are
relational comparisons (e.g., <=) and some build in operations that rely on object equality,
for example, the get and set operations of a map that computes a hash value for an object
when using the object as a key value.

Unfortunately, JavaScript proxies are not mentioned in the definition of object equality:
If x and y are the same Object value, return true. [33, 8., Section 7.2.13]. Thus, proxies are
opaque by choice of their implementation, and each proxy has its own identity, different from
all other proxy or non-proxy objects. However, in some use cases, this can lead to a program
failure when mixing proxies and their target objects in the same execution environment.

This chapter discusses different design alternatives to overcome this limitation.

13.1 Invariants for Equality

Before discussing design alternatives for proxy equality, let’s consider two different definitions
of equality. Equality is when things are the same (in some particular way). Formally, there
are two ways to define object equality:

Equivalence Relation Viewed as a relation, object equality is both, the finest equivalence
relation and a partial order on objects. An equivalence relation ≡ is a binary relation
that is for all objects a, b, and c:

reflexive: a ≡ a,
transitive: a ≡ b ∧ b ≡ c ⇒ a ≡ c
symmetric: a ≡ b ⇔ b ≡ a

A partial order ≡ is a binary relation that is for all objects a, b, and c:
reflexive: a ≡ a,
transitive: a ≡ b ∧ b ≡ c ⇒ a ≡ c
antisymmetric: a ≡ b ∧ b ≡ a ⇒ a = b

Now, equality can be defined using ≡: a is equals to b if and only if a ≡ b.
Observational Equivalence Observational equivalence is a property that states that the

underlying entities cannot be distinguished by observation. For example, the sets {a, b}
and {b, a} are observationally equivalent when using the membership operation ∈ as
observer. Both sets are indistinguishable and produce the same results.

Programming languages like Java, Objective C, C#, Python, and Racket come with different
operations for testing equality. Referential equality compares memory addresses (pointers)
and is, therefore, an equivalence relation. One object is equal to another object if they point
to the same address, and unequal if they do not. Structural equality, on the other hand,
compares the content of an object and tests for observational differences. Two objects are
structurally equal if and only if they are indistinguishable on their observable components.

Two examples of this are Racket’s equal? and eq? functions, where equal? implements
structural equality and eq? test for pointer equality, or Java’s == operator and the equals?
method in java.lang.Object.

In some programming languages (e.g., Java) it is up to the user to define the basis for
structural equality. Two objects a and b are observable equivalent if one can substitute a for
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b in a certain context without observable differences, i.e., a and b produces the same results.
Thus, sometimes two objects are structurally equal even if they have different types1.

Both definitions are independent of one another. Structural equality did not require that
the operands are pointer equal, but in most programming languages it holds that pointer
equality implies structural equality, but this is not absolutely necessarily required.

13.2 Object Equality in JavaScript

For objects, JavaScript provides only equality operators that test for referential equality. To
test for structural equality, JavaScript developers either use the built-in Object.prototype
.toString or JSON.stringify method to produce and compare a string of that object or
they have to write their own function to compare such objects. However, using toString is
disadvantageous, because the returned string depends on the order of added properties.

Unfortunately, none of the equality operators in JavaScript forms an equivalence relation.
The strict equality operator is not reflexive, and the type-converting equality operator is
neither reflexive nor transitive:

Strict Equality Operator

Not reflexive, because NaN === NaN is false.

Type-converting Equality Operator

Not reflexive, because NaN == NaN is false.
Not transitive, because "1" == 1 and 1 == "01" does not imply "1" == "01".

Moreover, comparing values (by using their variable names) for equality needs to be
considered carefully. For example, consider the following code snippet that compares the
values of two variables a and b.

1 if(a === b) {
2 ...
3 }

Listing 13.1 Example of an if-condition in JavaScript.

The if condition tests if both variables, a and b evaluate to an equal value. If yes, the
condition’s body is evaluated. One can assume that we are free to use either a or b in the
condition’s body. However, JavaScript’s with (head) { ... body ... } statement can be
used to modify the current environment by placing head on top of the scope chain while
executing body. Variable access that matches a property defined in head refers to the object’s
property. Because the head object could be a proxy (or an object that contains a getter
function), the head object may influence the return arbitrarily.

With this construction, which is somewhat related to dynamic binding [52], we can
dynamically change bindings in the scope chain by modifying a property defined in head. So,
the first access to a variable a and b could return the same value for both variables, whereas
the second access could return something different.

In JavaScript, guarantees are only given for values, i.e., for expressions that were evaluated
to values before applying the equality operator, or for variables that are defined in the same

1 This should not be confused with JavaScript’s type converting equality operation that first converts
both operands to a value of the same type.
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scope. Moreover, primitive values require to use the strict equality operator to give any kind
of guarantees.

To sum up, most JavaScript developers use equality to test a value to be null or undefined
or to compare primitive values. Thus, programmers expect an equality operator to be an
equivalence relation.

Treating proxies as transparent does not violate this expectation. It only weakens the
assumption that pointer-equal values imply observational equivalence. To overcome this,
transparent proxies could be restricted to projections that either behave identically to the
target object or that throw an exception.

13.3 Alternative Designs

As we have seen in Section 12.2, the expected result of comparing proxies depends on the use
case. This section explores some design alternatives for proxy equality and discusses their
usability.

13.3.1 Program Rewriting

The simplest way to obtain transparency is to provide proxy-aware equality functions, for
example Proxy.isEqual() and Proxy.isIdentical(), and to replace all uses of == and ===
with their proxy-aware counterparts. An internal map can be used to store the target object
for each proxy object proxy, and a recursive lookup can reveal the base target for each
proxy. These functions can be implemented in JavaScript, and the proxy constructor could
be extended to maintain this map.

This approach enables to treat some proxies as transparent, whereas all other proxies
remain opaque, and it allows to distinguish transparent proxies from their target objects in
the implementation of the proxy abstraction.

However, it requires to transform the program before its execution. A macro system,
for example, Sweet.JS for JavaScript [101], can elegantly do this. Unfortunately, Sweet.JS
is implemented as an offline source code transformation, and it is not able to deal with
JavaScript’s dynamic features like eval and with.

13.3.2 Additional Equality Operators

Another approach is to reimplement JavaScript’s equality operators == and === to unroll
proxy objects and to compare the proxy’s target objects. Two new operators, e.g., :==:
and :===:, can be used as their opaque cousins to preserve the behavior of the current
implementations of == and ===.

== and === are supposed to be used in application code, whereas the implementation of a
proxy library could use :==: and :===: to distinguish proxy and target objects.

This approach does not need any source code transformation. However, it is not clear how
to ensure that application code does not use the opaque operators. Given both operations,
the application code can test for proxies:

1 ((objectA==objectB) != (objectA:==:objectB));

Listing 13.2 Equality test for proxy objects.

This equality test returns true if one object is a proxy for the other object, and otherwise
false.
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13.3.3 Trapping the Equality Operation

Instead of introducing new operators, another approach is to trap the equality of a proxy
object. A proxy handler could be extended by an optional boolean trap that decides whether
the proxy is transparent or not when used in an equality test.

1 isTransparent : function () → boolean

Listing 13.3 Signature of an equality trap.

If the handler’s trap returns a false value (according to JavaScript’s definition of falsy
values) or if it is not present, then the associated proxy behaves opaquely. Otherwise, it
behaves transparently. Furthermore, the implementation of a proxy library can flip the
transparency of a proxy object by reconfiguring the handler in the library code, analogous to
the implementation of revocable references [20].

The following example shows the implementation of a function wrap that flips the trans-
parency. The corresponding flag is hidden in the function closure and cannot be manipulated
from the outside. The function makes proxies opaque before it checks the presence of the
target value in a map.

1 const wrap = (function() {
2 let flag = true;
3

4 return function (target) {
5 flag = false; // make proxies opaque
6 if(!map.has(target)) { // create new proxy, if not existing
7 let handler = {isTransparent:function() {
8 return flag;
9 }};

10 map.set(target, new Proxy(target, handler));
11 }
12 let proxy = map.get(target);
13 flag = true; // make proxies transparent before return
14 return proxy;
15 }
16 })();

Listing 13.4 Implementation of a wrap function which flips the transparency.

This design enables all scenarios in Section 12.2. However, it violates the assumption that
object equality is an equivalence relation as the trap may randomly return another value.

13.3.4 Transparent Proxies in the VM

Yet another approach is to make proxies generally transparent. This design guarantees that
object equality remains an equivalence relation, but it makes it impossible to test whether a
reference is a proxy or a non-proxy object.

Unfortunately, there are use cases that must be able to distinguish proxy from non-proxy
objects, for example, to improve efficiency. Thus, for implementing proxy abstractions, it
must be possible to break the transparency.

This could be done by using object-capabilities. A capability (this could be an object or
a message) describes a transferable right to perform a particular operation. Such a capability
object can easily be given to the constructor of entirely transparent proxies. The capability
can be hidden in the scope of the function that wraps objects.
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1 const wrap = (function() {
2 const capability = {};
3 return function(target, handler) {
4 return new TransparentProxy(target, handler, capability);
5 };
6 })();

Listing 13.5 Implementation of a wrap function using a capability.

Later, this capability can be used to see the real identity of the proxy’s id, e.g., to check the
presence of a target object in a weak map. The following snippet demonstrates the outcome.

1 Object.equals(object, proxyA, capability); // returns true
2 Object.equals(proxyA, proxyB, capability); // returns true
3 Object.equals(object, proxyA, { /* some other object */ }); // returns false
4 Object.equals(proxyA, proxyB, { /* some other object */ }); // returns false

Listing 13.6 Outcome of a transparent proxy.

WeakMap’s and other internal data structures using object equality can implement this
object-capability model in the same way.
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When comparing two objects for equality, a transparent proxy is (recursively) replaced by its
target object. Its suggested use is to implement projections, e.g., projection contracts: the
proxy either returns a value identical to the value that would be returned from the target
object (this also includes the same side effects) or it throws an exception. Thus, contracts
become invisible until a contract is violated.

This chapter presents a prototype implementation of transparent proxies in the VM and
reports on performance tests that were taken from evaluating JavaScript programs.

14.1 The User Level

As opaque and transparent proxies are intended for different use cases, we do not remove
or replace the existing proxy implementation. A new proxy constructor TransparentProxy
can be used to create a transparent proxy. Like the standard Proxy constructor, the new
TransparentProxy constructor takes two arguments: a target object, which might be a non-
proxy object or another (transparent or opaque) proxy object and a handler object that may
contain the same optional trap functions.

1 let proxy = new TransparentProxy(target, handler);
2 proxy === target // evaluates to true

Listing 14.1 Just a new Proxy Constructor.

Here, target and handler are arbitrary JavaScript objects. The newly created transparent
proxy proxy is transparent with respect to object equality. Whenever the transparent proxy
is used in an operation that builds on object equality, then it returns the identity of its target
object. In case that the proxy’s target object is another transparent proxy, then unrolling
proceeds on the proxy’s target object until it reaches a non-proxy object or an opaque proxy.

Thus, comparing proxy with its target object returns true, instead of false.

1 proxy === target // evaluates to true

Listing 14.2 Comparing proxy and target object.

Furthermore, a transparent proxy is equal to all other transparent proxies of the same target
and to all chains of nested proxies with the same base target.

1 let proxy2 = new TransparentProxy(target, handler);
2 proxy === proxy2 // evaluates to true

Listing 14.3 Comparing nested proxy objects.

1 let proxy3 = new TransparentProxy(proxy2, handler);
2 proxy3 === target // evaluates to true
3 proxy3 === proxy // evaluates to true

Listing 14.4 Comparing nested proxy objects (cont’d).

In addition to the comparison operators (==, !=,===, and !==), transparent proxies must be
unrolled in all situations. For example when using them as a key value in a keyed collection
like maps or sets or when matching switch clauses.

A keyed collection is a data structure that uses values as key, for examples to map a
value to another value in a map object. As these collections use value (object) equality on



132 Transparent Proxies

their key values, we must unwrap a transparent proxy to resolve a correct key value for this
proxy object. Our approach guarantees that identical objects map to the same field in a
keyed collection. The following example shows its behavior.

1 let set = new Set();
2 map.add(target);
3 map.add(proxy);
4 map.size; // returns 1
5 map.has(proxy2); // returns true
6 map.delete(proxy3); // returns true (successfully removed)

Listing 14.5 Using a transparent proxy as key value.

But, there is a peculiarity: When adding target in line 2 to the set its internal entries list
gets extended by the new entry. As in line 3 the proxy object is already part of the list is not
updated. Thus, when iterating over all elements, we still get target, the first added element,
and not the last one. This behavior also exists in JavaScript maps.

Furthermore, a switch statement need to unwrap a transparent proxy that is used as an
expression value or as a case value before matching the case clauses.

1 let proxy = new TransparentProxy(target, handler);
2 switch (proxy) {
3 // some other case clauses
4 case target:
5 // do something
6 break;
7 }

Listing 14.6 Matching a switch clause with a transparent proxy.

To sum up, transparent proxies are transparent with respect to object equality in all situations.
This design enables all the use cases in Section 12.2 and it preserves JavaScript’s guarantee
that object equality is an equivalence relation.

However, transparent proxies are slippery. Making them generally transparent makes it
impossible to test whether a reference is a proxy or an original object. As there are abstractions
that require to reveal the identity of a proxy library code may want to break the transparency
of a proxy. For example, the implementation of access permissions contracts [65] extracts the
current permission from a proxy to construct a new proxy with updated permission. This
improves the efficiency of the implementation, which would otherwise generate long chains of
proxy objects. But, with this implementation, it is hard to manipulate because transparent
proxies have no own (visible) identity.

14.1.1 Identity Realms

For implementing proxy abstractions, it must be possible to reveal the real identity of a
transparent proxy. Thus, we use object-capabilities to create proxies in a particular identity
realm and to create an equality function that reveals proxies of that realm. A capability
describes a transferable right to perform a specific operation, for example, to break the
transparency of a proxy object.

The realm constructor is implemented on top of the transparent proxy implementation
and creates a new identity realm, represented by a JavaScript object.

1 var realm = TransparentProxy.createRealm();

Listing 14.7 Creating a new identity realm.
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The realm object consists of a proxy constructor (named Proxy), an equals and an identical
function (which are related to JavaScript’s comparison operators equal and strict equal), and
a new constructor for all keyed collections, namely Map, Set, WeakMap, and WeakSet.

1 var proxy = realm.Proxy (target, handler);

Listing 14.8 Creating a transparent proxy in an identity realm.

The Proxy constructor creates a new transparent proxy of that realm. As before, the proxy
is transparent unless someone uses realm.equals or realm.identical. Here, realm.equals is
a capability that represents the right to reveal the real identity of proxies from that realm.

1 proxy === target; // evaluates to true
2 realm.equals(proxy, target); // evaluates to false

Listing 14.9 Comparing transparent proxies in a realm.

The functions realm.equals and realm.identical are not restricted to proxy object exclusively.
They adopt the behavior from JavaScript’s equals (==) and strict equals (===) operator such
that they can be used instead of the built-in comparison operators. Even though both
functions behave identical for objects, we may also apply the functions to primitive values.
Therefore, we need both variants as both behave differently for primitive values.

14.1.2 Realm-aware Data Structures

In addition to realm-aware equality functions, the realm object also provides new constructors
for all kinds of keyed collection. Instances of those collections see the real identity of proxies
of that realm. As before, it follows the principle that identical objects (in that identity
realm) have to point to the identical entry (in realm-aware data structures). Two transparent
proxies of the same realm are not identical; therefore they have to address different fields in
a collection. The following example demonstrates this behavior.

1 var realm = TransparentProxy.createRealm();
2 var proxy = realm.Proxy(target, handler);
3 var map = realm.Map();
4 map.add(proxy, 1); // map : [#proxy → (proxy, 1)]
5 map.add(target, 2); // map : [..., #target → (target, 2)]
6 map.size; // returns 2

Listing 14.10 Using realm-aware keyed collections.

As proxy and target are not identical with respect to the identity realm realm they address
different fields in the realm-aware map map. However, for every other map they remain
transparent and map to the same field.

Weak maps and other internal data structures are implemented in the same way.

14.2 Implementation

We implemented a prototype extension of the SpiderMonkey JavaScript engine [99], which
provides a new transparent proxy constructor TransparentProxy according to the design in
Section 14.1. SpiderMonkey is Mozilla’s JavaScript engine for Gecko and used in various
Mozilla products like Firefox. The SpiderMonkey engine contains an interpreter, two just-in-
time compilers (a baseline compiler and the IonMonkey optimizing compiler), and a garbage
collector. The baseline compiler is a warm-up compiler for IonMonkey and brings light
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performance improvements. The IonMonkey compiler brings high-performance optimizations
and enables to reduce the memory usage of SpiderMonkey.

Changing the equality leads to a couple of adjustments to the interpreter, the baseline
compiler, and the IonMonkey optimizing compiler.

14.2.1 JavaScript Interpreter

To support transparent proxies the interpreter has to be revised in several places:

1. The interpreter has to be extended by a new TransparentProxy object.
2. All comparison operators have to be modified to unroll transparent proxies to obtain the

identity object from that proxy.
3. All keyed collections that are connected to object equality have to be adjusted.

14.2.1.1 The TransparentProxy Object

The new TransparentProxy object extends the set of existing proxy implementations by a
new kind of proxy. It inherits all features from its opaque cousin and can be used in the
same way. The only difference is its transparency. No modifications were done to the existing
(opaque) proxy.

14.2.1.2 JavaScript’s Equality Comparison

JavaScript provides two kinds of comparison operators. The strict equality operator (e.g.,
===) returns false if both operands are not of the same type, whereas the type converting
equality operator (e.g., ==) first converts both elements to the same type before it applies
the corresponding strict equality operator. For objects, both operands behave identically.

The interpreter’s strict equality comparison x===y, called with values x and y, produces
true or false. The comparison works as follows [33, 7.2.13]:

1. If Type(x) is different from Type(y), return false.
2. If Type(x) is Undefined, return true.
3. If Type(x) is Null, return true.
4. If Type(x) is Number, then

a. If x is NaN, return false.
b. If y is NaN, return false.
c. If x is the same Number value as y, return true.
d. If x is +0 and y is −0, return true.
e. If x is −0 and y is +0, return true.
f. Return false.

5. If Type(x) is String, then
a. If x and y are exactly the same sequence of code units (same length and same code

units at corresponding indices), return true.
b. Else, return false.

6. If Type(x) is Boolean, then
a. If x and y are both true or both false, return true.
b. Else, return false.

7. If x and y are the same Symbol value, return true.
8. If x and y are the same Object value, return true.
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9. Return false.
The algorithm starts with checking if both values are of the same type. Then it handles all
comparisons of primitive values before it applies pointer equality.

To cater for transparent proxies, the algorithm needs to unroll a transparent proxy to
its identity object before applying pointer equality. The internal method GetIdentityObject
returns the object that should be used in an equality test. Our implementation extends the
algorithm as follows:

1. . . .
8. If x is Object, then

a. Let lhs be the result of calling GetIdentityObject on x.
b. Let rhs be the result of calling GetIdentityObject on y.
c. If lhs and rhs refer to the same object, return true.
d. Otherwise, return false.

9. . . .

14.2.1.3 Getting the Identity Object

When comparing two objects for equality, transparent proxies may not use their own identity.
To get the right identity for an operation, all global object comparisons refer to an internal
GetIdentityObject method, that returns the correct identity for that operation. The following
listing shows a pseudo-code implementation of this algorithm.

1 function GetIdentityObject(object, realm) {
2 if (isTransparentProxy(object) && object.realm!==realm) {
3 return GetIdentityObject(getProxyTargetObject(object), realm);
4 } else {
5 return object;
6 }
7 }

Listing 14.11 Pseudo-code for GetIdentityObject.

For a non-proxy object and an opaque proxy, the function returns its argument. For a trans-
parent proxy object, GetIdentityObject returns the result from applying GetIdentityObject
to the proxy’s target object. The method stops the traversal when reaching a transparent
proxy of a particular realm.

The following enumeration gives a brief scratch of the implementation used in the
prototype implementation. Every transparent proxy carries an internal slot that contains its
identity realm. When the GetIdentityObject internal method is called with argument O and
realm R the following steps are taken:

1. Assert: Type(O) is Object.
2. If O is not a TransparentProxy object, then return O.
3. If R is not null, then

a. Let realm be the value of the [[ProxyRealm]] internal slot of O.
b. If realm equals R, return O.
c. Else, let target be the value of the [[ProxyTarget]] internal slot of O.
d. Return the result of calling GetIdentityObject, passing target as the argument and R

as realm.
4. Else, let target be the value of the [[ProxyTarget]] internal slot of O.
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5. Return the result of calling GetIdentityObject, passing target as the argument and null as
realm.

14.2.1.4 Realm-aware Equality Comparison

Completely transparent proxies are indistinguishable from their base target. However, to
make them distinguishable, realm.equals and realm.identical can be used to detect a
distinction.

When realm.equals is called with arguments x, y the following steps are taken:

1. If x is not a TransparentProxy object or y is not a TransparentProxy object, then

a. Return the result of applying the built-in equality method to x and y.

2. Else

a. Let realm be the value of the [[Realm]] internal slot of realm.equals.
b. Let lhs be the result of calling GetIdentityObject, passing x as an argument and realm

as realm.
c. Let rhs be the result of calling GetIdentityObject, passing y as an argument and realm

as realm.
d. Let result be the value of testing the equality of the lhs and rhs references.
e. Return the result of ToBoolean(result).

14.2.1.5 Realm-aware Keyed Collections

In addition to the comparison operators, all internal data structures that depend on object
equality (e.g., Map, Set, and WeakMap) need to be adjusted to handle transparent proxies.
Whenever target == proxy in a particular identity realm, then target and proxy must address
the same field in a collection in that realm.

When adding a new element to a set (or a key-value pair in a map), the operation first
calls the GetRealmIdentityObject internal method to determine the identity object of that
key value and computes a hash value for the identity object. However, the original key value
is stored in the collection, not its identity object. This guarantees that maps and sets cannot
be used to unwrap proxies and that iterating over the keys still returns the proxy object.

14.2.2 Baseline Compiler

The SpiderMonkey Baseline Compiler is the first tier of the SpiderMonkey JIT compilation
process. It collects information by using inline caches for some operations and it produces
native code for JavaScript through stub method calls.

To adjust the Baseline Compiler, the fallback stub was modified to do a VM call when
comparing two objects for equality and to compare both objects in exactly the same manner
as done in the interpreter. This step is required because the Baseline Compiler dies not
see the base target for a transparent proxy. Hence, it is not possible to optimize object
comparisons involving transparent proxies.

14.2.3 IonMonkey Compiler

The IonMonkey optimizing compiler is the final tier of the SpiderMonkey JIT compilation
process. It runs on top of the Baseline Compiler. Like before, the IonMonkey optimizing
compiler did not see the base target for a transparent proxy.
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When comparing two objects for equality, we stop emitting optimized code for any object-
object comparison that involves a TransparentProxy object. We use the fallback stub to do
a VM call and to do a comparison with the identity object. Any other kind of comparison
remains unaffected and still happens through the optimized stubs.

14.2.4 Getting the Source Code

The implementation of the modified engine is available on the Web1. Its branch global-tproxy-
object2 contains the implementation of the TransparentProxy object and all modifications
shown in this chapter. A README.txt file in the branch links to the build instructions.

14.3 Performance

This section reports on the performance of our modified engine. In detail, it considers the
question if the introduction of transparent proxies affects the performance of the JavaScript
code.

In a first experiment, we applied our modified engine to JavaScript benchmark programs
that do not use proxies at all to evaluate the performance impact on non-proxy code. However,
these programs are affected by our changes to the equality comparison algorithm that is used
by all built-in equality operators as well as in maps and sets.

In a second experiment, we add (opaque and transparent) proxies to the benchmark
programs to evaluate the impact on code that makes use of proxies.

14.3.1 The Testing Procedure

Again, we use benchmark programs from the Google Octane 2.0 Benchmark Suite [85].
In our first experiment we simply run the benchmark programs in our modified engine,

and in a baseline engine to obtain comparative values. In both cases, we run the benchmarks
in different configurations to distinguish the impact on the interpreter from the impact on
the baseline compiler and the IonMonkey compiler.

In our second experiment, we apply a source-to-source compiler to the benchmark program
to wrap all function expressions in a proxy object, which, when applied to some values,
recursively implements a proxy membrane on that values.

All benchmarks were run on a benchmarking machine with two AMD Opteron processors
with 2.20 GHz and 64 GB memory.

14.3.2 Results

Table 14.1 contains the score values of all benchmark programs in different configurations and
Table 14.2 shows the percentage variance between the score values from the unmodified engine
and the score values from the modified engine. All scorings were taken from a deterministic
run and by using a warm-up run.

Comparing the total scores of the interpreter (sub-column No-JIT), the modified engine
is 0.55% slower than the unmodified engine. When comparing the total scores of the baseline
compiler (sub-column No-Ion) we see that the modified engine is 0.21% slower than the

1 https://github.com/keil/gecko-dev
2 https://github.com/keil/gecko-dev/tree/global-tproxy-object

https://github.com/keil/gecko-dev
https://github.com/keil/gecko-dev/tree/global-tproxy-object
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Benchmark Origin Modified
Full No-Ion No-JIT Full No-Ion No-JIT

Richards 14368 403 62 14245 430 64
DeltaBlue 15657 403 73 16210 393 74
Crypto 13143 794 119 13018 791 119
RayTrace 37739 428 156 37788 408 156
EarleyBoyer 11726 930 247 11891 898 250
RegExp 1554 755 336 1538 748 320
Splay 9663 1211 500 9874 1213 515
SplayLatency 14205 4216 2762 12980 4396 2723
NavierStokes 15875 1016 180 15905 1011 179
pdf.js 5623 2801 719 5643 2858 708
Mandreel 8313 433 86 8339 429 86
MandreelLatency 8045 2730 547 8055 2680 514
Gameboy Emulator 16738 3115 536 16479 3163 523
Code loading 9128 9304 9971 9136 9333 9938
Box2DWeb 14977 1631 317 14564 1609 312
zlib 36945 36909 36746 36897 36945 36685
TypeScript 13921 3190 1207 13733 3111 1217

Total Score 11904 1620 484 11840 1617 481

Table 14.1 Scores for the Google Octane 2.0 Benchmark Suite (bigger is better). Column
Origin gives the baseline scores for the unmodified engine and column Modified contains the
scores for running with the modified engine. The sub-column Full lists the scores with enabled
IonMonkey compiler, whereas sub-column No-Ion (no IonMonkey) lists the scores with enabled
baseline compiler, but disabled IonMonkey compiler. The last sub-column No-JIT (no just-in-time
compilation) shows the scores without any kind of just-in-time compilation.

unmodified engine and comparing total scores of the IonMonkey compiler (sub-column full)
we see that the modified engine is 0.54% slower than the unmodified engine.

However, when looking to the score values of particular benchmark programs we see
that some benchmarks are faster in the modified engine than in the unmodified engine. For
example, the DeltaBlue benchmark runs 1.22% faster in the interpreter mode, 2.72% slower
in the Baseline compiler mode, and 3.41% faster in the IonMonkey mode. But, all observed
differences are in the range of the standard deviations of the mean score produced by the
unmodified engine. When looking at the total score, we got a standard deviation for the
total score of 2 score points in the interpreter mode, a difference of 13 score points in the
baseline compiler mode, and a standard deviation of 62 score points in the IonMonkey mode.

The numbers indicate that our modifications do not have an observable impact on the
execution time of non-proxy code. The reason is that the majority of all equality tests are
between primitive values or test an object for null or undefined. However, our modification
only applies when both operands are objects.

14.3.3 Threats to Validity

A reader might argue that the subject programs are uninteresting because they do not contain
proxies. The benchmarks are taken to measure the impact on the execution of non-proxy
code. Clearly, long chains of nested transparent proxies will increase the execution time.

To make a valid comparison with the original engine, we have to take code that evaluates
to the same outcome in all engines. The original engine makes it impossible to replace objects
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Benchmark Percentage Variance Standard Deviations
Full No-Ion No-JIT Full No-Ion No-JIT

Richards 0.86% -6.28% -2.20% 45 14 0.36
DeltaBlue -3.41% 2.72% -1.22% 776 2 0.40
Crypto 0.96% 0.34% 0.00% 73 5 0.44
RayTrace -0.13% 4.73% -0.21% 740 2 0.44
EarleyBoyer -1.38% 3.56% -1.07% 190 7 0.67
RegExp 1.02% 0.94% 4.89% 10 8 2.67
Splay -2.14% -0.11% -2.98% 360 64 31.11
SplayLatency 9.44% -4.09% 1.43% 378 542 84.44
NavierStokes -0.19% 0.49% 0.56% 16 4 0.67
pdf.js -0.34% -1.98% 1.60% 289 76 1.78
Mandreel -0.30% 0.93% 0.08% 9 22 0.56
MandreelLatency -0.12% 1.88% 6.49% 511 52 2.89
Gameboy Emulator 1.57% -1.50% 2.42% 1787 36 3.33
Code loading -0.08% -0.31% 0.34% 92 30 18.00
Box2DWeb 2.84% 1.35% 1.82% 16 7 0.44
zlib 0.13% -0.10% 0.17% 40 111 45.33
TypeScript 1.37% 2.53% -0.82% 333 13 1.33

Total Score 0.54% 0.21% 0.55% 62 13 2.00

Table 14.2 Percentage variance and Standard Deviation for the Google Octane 2.0 Benchmark
Suite. Column Percentage Variance shows the percentage variance between the score values
from the unmodified engine and the score values from the modified engine. Column Standard
Deviations shows the standard deviation of the mean score produced by the unmodified engine.

with their (opaque) proxies without influencing the execution. As reported in Chapter 12
some object-object comparisons flip their result after introducing proxies.





15 Observer Proxy

The presented transparent proxy (Chapter 14) is a straightforward extension of the already
existing opaque proxy. However, the intended use cases of a transparent proxy (the imple-
mentation of projection contracts) do not require that the transparent proxy is as powerful
as the opaque proxy. Quick recap: the existing proxy implementation allows to redefine the
semantics of the underlying target object in many aspects.

For implementing a transparent contract wrapper, it would be sufficient to restrict
transparent proxies to projections: i.e., it either behaves identical to the target object, or it
restricts the behavior of the target object, e.g., by throwing an exception.

A so-called Observer Proxy has to produce the same side effects as the target object,
and it has to return a value identical to the value that would be returned from the target
object, or it has to throw an exception. Returning an identical value includes the return of
an Observer of this value to implement a membrane and to further restricts the behavior.
Such an Observer can cause a program to fail more often, but in case it returns it behaves in
the same way as if no observers would be present.

A similar feature is provided by Racket’s chaperone [100] proxy. A chaperone either
returns an identical value, a chaperone of this value, or throws an exception.

15.1 Draft Implementation of an Observer Proxy

This section sketches the implementation of an observer proxy in JavaScript. The implemen-
tation is based on a transparent proxy as presented in Chapter 14 and adapts the semantics
of Racket’s chaperone proxy [100] in some aspects. Its design obeys the following rationales:

Interference-free Monitoring User-defined traps are not allowed to perform effects other
than the target object would do. This means that traps can inspect the operation’s
arguments and the operation’s return as long as they do not attempt to cause observable
effects. However, in JavaScript, each property access might be the call of a side-effecting
getter function. This requires that the observer protects the arguments from any write
operation, which also includes a prohibition of getter functions.

Projection After inspection, the user-defined traps must either throw an exception or perform
equal to the default operation. Also, each trap can implement further restrictions on the
given arguments by wrapping the values in an observer, e.g., to implement a membrane
or to assert domain contracts to the function arguments.

Permitted Effects User-defined traps must not cause side effects on the given arguments.
However, the implementation of contracts and membranes may require to store data (e.g.,
the current evaluation state) for later use, to remember already wrapped objects to avoid
re-wrapping, or even to call external functions and constructors. This requires that traps
are permitted to perform effects on a certain domain.

The implementation is available as a JavaScript library on the web1.

1 https://github.com/keil/Observer.js

https://github.com/keil/Observer.js
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1 var handler = {
2 get: function(target, name, receiver, continue) {
3 continue(target, name, receiver, function inspect(result, commit) {
4 commit(result);
5 });
6 }
7 }
8 var target = { /* some object */ };
9 var proxy = new Observer(target, handler);

Listing 15.1 Draft implementation of a handler object for an observer proxies.

15.1.1 The User Level

Listing 15.1 demonstrates the implementation of a handler object for an observer proxy. The
example shows the implementation of the get trap. Other traps can be implemented in the
same way.

The constructor Observer (line 9) creates a new observer proxy. Like opaque proxies, the
constructor consumes two parameters: a target object, which can be a native or another
proxy object, and a handler object containing traps to observe operations on proxy. Like
before, the handler is a placeholder object for optional trap functions.

Observer proxies extend the already existing opaque (transparent) proxies and provide
an API similar to the API of opaque proxies, i.e., they mediate the same operations, and
they look for the same trap functions in the handler object. However, traps are only allowed
to inspect the operation or to implement further restrictions.

To this end, all values that are given to the trap are wrapped in a proxy membrane that
protects the values from unintended modifications. As the trap is not able to perform the
usual operation (e.g., a property set) observer traps apply a continuation-passing style (CPS)
to enable inspection and to continue operations.

All traps are called before the operation performs. This enables to inspect the operation’s
arguments (e.g., the property to get or the new value of a property), to implement further
restrictions by wrapping the values in another observer, or to throw an exception. After
inspection, the trap continues with the default operation by calling a continuation function
(continue), which is given as the last argument to the trap function.

For example the get method (line 2), which is a trap for handling property access. Its
parameters are the target object, the property name to get, and the receiver object. In
addition, it takes a continue function to continue the original operation. Performing an
operation like proxy.x calls the get. This enables to inspect the arguments or to implement
further restrictions on the parameters. To continue with the property lookup, the trap
calls this continue function with the traps parameters. Also, continue consumes another
continuation function (here called inspect) to continue inspection after doing the property
lookup and before return the value to the user.

Internally, continue first checks if the arguments are identical to the values given to get.
Then it proceeds to call the standard operation on the target value. After doing this, it calls
inspect with the operations return to continue inspection and another continuation function,
commit to return a value. Again, the return value gets wrapped in a proxy membrane to
protect the value from modifications.

Figure 15.2 shows the implementation of a wrap function implementing a proxy membrane
based on observer proxies. The observer checks if a property exists before getting a property
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1 function wrap(target) {
2

3 if(!(target instanceof Object))
4 return target;
5

6 var handler = {
7 get: function(target, name, receiver, continue) {
8 // checks for undefined property names
9 if(!(name in target))

10 throw new Error(‘Access to undefined property ${name}.‘);
11 // continue property lookup
12 continue(target, name, receiver, function inspect(result, callback) {
13 // implement membrane
14 callback(wrap(result));
15 });
16 }
17 }
18 return new Observer(target, handler);
19 }

Listing 15.2 Implementation of a proxy membrane using observers.

value. If the property exists it continues with the property lookup and wraps the return
value in the same membrane. Otherwise, it throws an exception.

15.1.2 Under the Hood: The Meta-Handler

The implementation of observer proxies uses meta-level funneling [20] to mediate access to
the user-defined handler object. Meta-level funneling is a technique that implements another
proxy as the base-proxy’s handler object.

in general, the implementations distinguish between a user-defined handler (called handler)
that contains traps for observing operations on the proxy object (cf. Section 15.1.1) and an
internal meta-handler (called controller) that implements the behavior of the observer.

Figure 15.1 illustrates the implementation of a meta-handler. Performing an operation
(like property get or property set) on the observer object results in a meta-level call on the
proxy’s handler object, i.e., a property get on the proxy’s handler to get the corresponding
trap. As this object is again a proxy object, the request for trap ends up in a meta-level call
on the controller object by calling the get-trap on the controller object. This trap now devices
what to do with the current operation: it may forward the operation to the user-defined
trap or it may trigger the default operation. In our case, the controller calls the calltrap
methods, which handles all trap operations of the observer proxy.

Figure 15.3 shows the implementation of the constructor function for observer proxies.
The constructor function takes the target object and the user-defined handler. In addition,
there is a flag that instructs the constructor to store the observer in a map for later use.
This is required to reveal observers, if necessary.

In line 5 the constructor first checks if the target object is a sandbox proxy. This step is
required because observer traps never see the unprotected values. They always see sandbox
proxies. However, for implementing a membrane, it is necessary to wrap values in another
observer. Thus, instead of implementing the observer on top of the sandbox wrapper, the
observer gets implemented on the unwrapped sandbox value, and the sandbox proxy gets
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controller

proxy

observer

handler

target

reflect

Meta-Meta-Level
Meta-Level

Meta-Level
Base-Level

observer.x;
observer.x=1;

controller.get(reflect, "get", proxy);
controller.get(reflect, "set", proxy);

calltrap(...)

target["x"];
target["x"]=1;

Figure 15.1 Example of an observer operation. The property get observer.x end up in an trap
request on the controller object by calling the trap controller.get(reflect, "get", proxy); and
the property set operation observer.x=1 ends in an trap request on the controller by calling the
trap controller.get(reflect, "set", proxy);.

re-implemented on top of the observer. The other construction steps are straightforward: It
first gets the Proxy constructor from its identity realm before it wraps the target object in a
new transparent proxy.

Figure 15.2 illustrates the implementation of the proxy-chain inside of a handler object
while implementing a proxy membrane through observer proxies. In the first part, we have
a sandbox proxy wrapping a target object. When wrapping the sandbox-proxy in another
observer proxy, the constructor installs the proxy below of the sandbox proxy, as the second
part demonstrates. In the third part, we have the situation after installing a second observer
proxy on an already wrapped object.

Listing 15.4 shows the implementation of the controller. It is a simple proxy handler
that defines the get trap. As the controller is a meta-handler, it’s trap gets called whenever
looking for a trap in the user-defined handler.

The trap first checks if the requested trap is defined. If yes, it returns a function which
handles calling the user-defined trap. Otherwise, it returns the default method from Reflect.

Listing 15.5 shows the implementation of function calltrap. The function is responsible
for handling the inspection process of the user-defined trap. As arguments, it takes the
user-defined trap trap, a function for the corresponding default operation, and a list of trap
arguments as provided by the proxy objects for that trap.

It starts with applying the user-defined trap trap to the sandboxed this objects and
the sandboxed arguments values. The provided continuation function first checks if the
arguments provided by the user are identical to the default values. This comparison only
works with transparent proxies. The user-defined trap needs to return a value identical to
the default return, i.e., either the same value or an observer of that value.

Later, it performs the default operation and calls the user-defined post-operation-
inspection with the sandboxed return value. It also provides another continuation function,
commit, to complete the operation. As before, function commit first checks if the return value
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1 function Observer(target, handler, keep=true) {
2 if(!(this instanceof Observer)) return new Observer(target, handler, keep);
3

4 // wrapping of a sandbox proxy.
5 if(sandbox.has(target)) {
6 return sandbox.wrap(new Observer(sandbox.unwrap(target), handler, keep));
7 }
8

9 // Proxy Constructor
10 const Proxy = realm.Proxy;
11

12 // create new observer based on the given handler
13 const observer = new Proxy(target, new Proxy(Reflect, new Controller(handler)));
14

15 // remembers existing observers
16 if(keep) observers.add(proxy);
17

18 // return new observer proxy
19 return proxy;
20 }

Listing 15.3 Implementation of the Observer constructor.

1 function Controller(handler) {
2 if(!(this instanceof Controller)) return new Controller(handler);
3

4 this.get = function(Reflect, trapname, receiver) {
5 return (trapname in handler) ? function () {
6 return calltrap(handler[trapname], Reflect[trapname], Array.from(arguments))
7 } : Reflect[trapname];
8

9 }
10 }

Listing 15.4 Implementation of the Controller handler.
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1 function calltrap(trap, default, argumentsList) {
2

3 // Default trap return.
4 let result = undefined;
5

6 trap.call(sandbox.wrap(this), ...sandbox.wrap(argumentsList), function(...args) {
7

8 // Function inspect
9 const inspect = args.pop();

10

11 if((typeof inspect) !== ’function’) throw new TypeError();
12

13 // Unwrap and check arguments.
14 for(var i in args) {
15 var arg = sandbox.unwrap(args[i]);
16

17 if(arg === argumentsList[i]) argumentsList[i] = arg;
18 else throw new ObserverError("Argument values must be equal to the default

arguments.");
19 }
20

21 // Call the default operation.
22 result = default.apply({}, argumentsList);
23

24 // continues inspection
25 inspect.call(null, sandbox.wrap(result), function commit(value) {
26

27 // unwrap the return value
28 let value = sandbox.unwrap(value);
29

30 // check the return value
31 if(result === value) result = value;
32 else throw new ObserverError("Return values must be equal to the default

return.");
33

34 });
35 });
36

37 // Return result
38 return result;
39

40 }

Listing 15.5 Implementation of function calltrap.
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sandbox target

sandboxA observerA target

sandboxB observerB observerA target

Figure 15.2 Example of implementing an observer membrane. The example demonstrates the
proxy-chain inside of a handler object while implementing a proxy membrane through observer
proxies.

returned from the user-defined trap is identical to the default return value. If yes it returns
the value. Otherwise, it throws an exception.

15.1.3 Notes

JavaScript proxies are a powerful mechanism to redefine the semantics of an underlying
target object. However, this power also has a cost. Proxies prevent the optimizing compiler
from optimizing a program efficiently. Furthermore, as the semantics of the proxy object
may differ from the semantics of its target, it is sensible to spend proxies an own identity.

However, this prevents some useful use-cases. Contract proxies, for example, did not
need the full power as provided by JavaScript’s built-in proxy objects. For implementing
projection contracts it would be sufficient to restrict proxies to transparent observers.

Built-in observer proxies would also enable the JIT compiler to optimize a program
more efficiently. Proxies are no longer able to perform arbitrary side effects or to return an
arbitrary value.
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16 An Evaluation of Contract Monitoring

Dynamic contract monitoring has become a prominent mechanism while providing strong
guarantees and still preserving the flexibility and expressiveness of a language. Writing
formal and precise specifications in the form of contracts sounds appealing, but it comes
with a cost: Dynamic contract monitoring degrades the execution time of the underlying
program [102].

The costs arise because every contract extends a program with additional code that
checks the contract while the program executes. Moreover, efficiency unconscious human
developers may add contracts to error-prone functions and objects so that contracts end
up on frequently used functions or hot-paths in a program. In particular, predicates may
repeatedly check the same values, and different predicates may check redundant parts.

Existing contract systems like Racket’s contract framework [45, Chapter 7], Disney’s
JavaScript contract system contracts.js [30], JSConTest2 [64], or TreatJS for JavaScript report
a considerable runtime impact when extending programs with contracts.

In contrast, static contract checking [113] avoids additional runtime costs by removing
contracts after inspection. However, static contract checking is not suitable for a language
like JavaScript. The dynamic nature of JavaScript requires dynamic contract monitoring.
Completely static techniques would lead to a huge number of false positives.

This part presents our ongoing work on Static Contract Simplification which attacks this
issue with compile-time program transformation. Its goal is to apply static contract checking
to simplify a contract and to obtain residual contracts that are collectively cheaper to check
at runtime while preserving the original behavior of the program.

16.1 Motivation

Dynamic contract checking impacts the execution time of the underlying program. Source
of this impact is (1) that every contract extends a program with additional contract code,
(2) that the contract monitor itself causes some run-time overhead, and (3) that the presence
of contracts prevents a program from being optimized efficiently. To illustrate this, we
consider runtime values obtained from the TreatJS (cf. Chapter 7) contract framework for
JavaScript.

TreatJS reports a heavy runtime deterioration because of the presence of intersection
and union contracts require to continue contract checking on both operands, even if the
contract monitor already observes a contract violation in a subcontract. The final violation
depends on combinations of failures in different subcontracts. Moreover, the contract
monitor must connect the outcome of each subcontract with the enclosing contract operation.
Figure 16.1 contains the runtime values from running the Google Octane Benchmark Suite,
and Figure 16.2 lists some numbers of internal counters (see also Section 7 for more details).

The numbers indicate that the heavily affected benchmarks (Richards, DeltaBlue, Ray-
Trace) contain a very large number of predicate checks. For example, the Richards benchmark
performs 24 top-level contract assertions (this are all unique contracts in a source program),
1.6 billion internal contract assertions (including top-level assertions, delayed contract check-
ing, and predicate evaluation), and 936 million predicate checks. If we assume that every
predicate check is at least one function call, one wrap operation on the subject value, and
one update operation on the callback graph, then it does not come as a surprise that the
overall run-time increases from 4 seconds to approximately 5 hours and 33 minutes.



152 An Evaluation of Contract Monitoring

Benchmark Baseline TreatJS
time (sec) time (sec) slowdown

Richards 4 19995 5093
DeltaBlue 3 28431 9285
Crypto 8 8 1
RayTrace 2 9510 4035
EarleyBoyer 56 PositiveBlame
RegExp 6 6 1
Splay 3 162 55
SplayLatency 3 162 55
NavierStokes 4 4 1
pdf.js 6 27 4
Mandreel 5 PositiveBlame
MandreelLatency 5 PositiveBlame
Gameboy Emulator 4 1741 465
Code loading 9 9 1
Box2DWeb 4 2354 609
zlib 8 8 1
TypeScript 23 PositiveBlame

Figure 16.1 Timings from running the Google Octane 2.0 Benchmark Suite. Column Baseline
gives the baseline execution time of a run without contract assertion. Column TreatJS shows the
execution time and the slowdown for running the benchmark program with contract monitoring.

Benchmark Contract Assert Predicate Membrane Callback

Richards 24 1599377224 935751200 935751208 935751200
DeltaBlue 54 2320357672 1341331212 1341331220 1341331212
Crypto 1 5 3 11 3
RayTrace 42 687244882 509234422 509234430 509234422
EarleyBoyer 21 201 133 141 136
RegExp 0 0 0 8 0
Splay 10 11624671 7067593 7067601 7067593
SplayLatency 10 11624671 7067593 7067601 7067593
NavierStokes 51 48335 39109 39117 39109
pdf.js 824 1770208 1394694 1394702 1394694
Mandreel 4 14 5 13 8
MandreelLatency 4 14 5 13 8
Gameboy Emulator 3206 141669753 97487985 97487993 97488305
Code loading 5600 34800 18400 18408 18400
Box2DWeb 20075 180252500 112751947 112751955 112820587
zlib 0 0 0 8 0
TypeScript 730 7315 3902 3910 4068

Figure 16.2 Statistic from running the Google Octane 2.0 Benchmark Suite. Column Contract
shows the number of top-level contract assertions. Column Assert contains the numbers of internal
contract assertions whereby column Predicate lists the number of predicate evaluations. Column
Membrane shows the numbers of wrap operations and the last column Callback gives the numbers
of callback updates.
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The examples show that the run-time impact of a contract depends on the frequency
of its application. Contracts on a heavily used function (e.g., in Richards, DeltaBlue, or
RayTrace) force a huge number of predicate checks, and thus they cause a significantly higher
runtime deterioration than contracts on rarely used function.

16.2 Static Contract Simplification

Static Contract Simplification adapts ideas from previous work on hybrid contract check-
ing [112] and static contract verification [83]. Its main objective is to use static contract
checking to evaluate as much from a contract as possible and to collapse the remaining parts
to a smaller contract that is more efficient to check at run-time.

To this end we propagate contracts through the program code, we detect and remove
redundant parts, we check predicates where possible, and we propagate the remaining
fragments to the enclosing module boundary. Finally, we condense the remaining fragments
to new contracts which only contain parts that must be checked at run-time. Our goal is
neither to detect contract violations at compile time nor to rewrite or optimize the source
code of the program.

To demonstrate the essence of our idea, consider the following code snippet that contains
a function with an intersection contract.

1 let addOne = ((λ plus (λ z ((plus 1) z)))
2 [(λ x (λ y (+ x y)))
3 @ ((Number? → (Number? → Number?)) ∩
4 (String? → (String? → String?)))])

Listing 16.1 Definition of function addOne with an intersection contract.

The example creates a function addOne which returns the result of applying function plus to
its argument z and the number value 1. We use @ to indicate a contract assertions, → stands
for a function contract, and ∩ builds the intersection of two contracts. For readability, we
put contract assertions in square brackets. Moreover, we rely on the previously defined flat
contracts Number? and String?, which check for number and string values, respectively.

Assuming an overloaded + operator that works for number and string values (but fails
for other inputs), a programmer may add an intersection contract to plus. The intersection
contract enables the context (in this case function addOne) to use plus either with number or
string values. It only requires that both values are of the same type. However, this requires
to check the entire domain of both function contracts on every use of plus.

But, as the second argument of plus is already a number value we “statically” know that
the right side of the intersection is never fulfilled. The only possibility to fulfill the contract
is to call plus with a number value. Based on this knowledge it remains to check if the first
argument of plus (z) and its return value satisfy the Number? contract. Moreover, as z is
addOne’s parameter, we can lift the remaining contracts to an interface description on addOne,
as the following example demonstrates. Only two predicate checks must remain, and this
contract is cheaper to check as it has no intersection.

1 let addOne = [((λ plus (λ z ((plus 1) z))) (λ x (λ y (+ x y))))
2 @ (Number? → Number?)]

Listing 16.2 Definition of function addOne after static simplification.

This simplification can be done even without knowing if addOne is ever used. However, it still
requires to track the evaluation state of statically evaluated predicates and to connect each
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remaining fragment with its original contract operator. Moreover, it is necessary to preserve
the responsibilities of a contract.

As the static contract simplification may change the order of predicate checks, we divided
the simplification into two optimization levels: The Baseline Simplification and the Subset
Simplification, each of which provides a different degree of simplification.

The Baseline Optimization unrolls and unfolds contracts and evaluates predicates where
possible while preserving the blame behavior of a program. The Subset Optimization
reorganizes contracts and forms new contracts from the remaining fragments, but thereby it
may change the order of arising violations. Our contract simplification follows three overall
guidelines, whereby each simplification step either satisfies strong or weak blame-preservation.

Real Optimization Each transformation step is a real benefit, i.e., it either reduces or
maintains the total number of predicate checks at runtime. Simplification did never lead
to more predicate checks.

Strong Blame-Preservation Each transformation step preserves the blame-behavior of a
program, i.e., it maintains the order of contract checks at runtime. An optimized program
results in exactly the same outcome as the original program.

Weak Blame-Preservation As some transformation steps may change the order of predicate
checks they may also change the order of observed violations. It follows that an optimized
program results in a blame state if and only if the original program would result in
a blame state. However, while changing the order of predicate checks, an ill-behaved
program might fail for another reason first.

Moreover, the simplification technique can also be used to over-approximate contract viola-
tions and to detect violations at compile-time. But this would violate all three guideline.

16.3 Implementation

We created an executable implementation using PLT Redex [37]. The implementation uses
the contract calculus presented in Keil and Thiemann’s work on Blame Assignment for
Higher-Order Contracts [67] and allows to apply all simplification steps to a term with a
contract. The implementation is available online at GitHub1.

1 https://github.com/keil/Contract-Simplification

https://github.com/keil/Contract-Simplification
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This chapter explains the main ideas of our simplification through a series of examples. We
start with a simple example and work up to more complex ones.

17.1 Unrolling Delayed Contracts

The first series of examples considers different contracts on the addOne example from the
previous chapter. To recap, the following code snippet defines addOne without contracts.

1 let addOne = ((λ plus (λ z ((plus 1) z))) (λ x (λ y (+ x y))))

Listing 17.1 Definition of function addOne.

The outermost term creates a function addOne, which returns the result of applying function
plus to its argument z and the number value 1. Function plus takes two arguments and
applies the native + operator to it. In a first step, we add a simple function contract to plus.

1 let addOne = ((λ plus (λ z ((plus 1) z)))
2 [(λ x (λ y (+ x y))) @ (Number? → (Number? → Number?))])

Listing 17.2 Definition of function addOne with a simple contract.

Here, @ stands for a contract assertion, → defines a function contract, and Number? is a flat
contract that checks for number value.

While Number? is a flat contract that is checked immediately when asserted to a value,
the function contract is delayed and must stay with the value until the value is used. Thus,
calling addOne forces three predicate checks.

Now, instead of asserting a delayed contract, our Baseline Simplification unrolls a delayed
contract to all uses of the contracted value. This step removes the delayed contract from
plus and grafts it to all occurrences of plus in addOne.

1 let addOne = ((λ plus (λ z (([plus @ (Number? → (Number? → Number?))] 1) z)))
2 (λ x (λ y (+ x y))))

Listing 17.3 Definition of function addOne after contract unrolling.

This step performs no simplification, but it yields an equivalent program that is better suited
for reducing the function contract. The next step unfolds the function contract on plus to
its domain and range expression as the contract is on an expression that is in the application
position. The following code snippet demonstrates the results after completely unfolding the
contract, which is a combination of several unfolding steps.

1 let addOne = ((λ plus (λ z [((plus [1 @ Number?]) [z @ Number?]) @ Number?]))
2 (λ x (λ y (+ x y))))

Listing 17.4 Definition of function addOne after contract unfolding.

Now, all function contracts are completely decomposed into flat contracts which are spread
over the domain and range of the function. Obviously, the contract system must remember
the origin and the responsibility of the flat contract to blame the correct party.

After unfolding, there are several flat contracts applied to values. All such contracts
can be checked statically and, if satisfied, removed from the program without changing the
outcome of that program. For example, 1 satisfies Number?.
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1 let addOne = ((λ plus (λ z [((plus 1) [z @ Number?]) @ Number?]))
2 (λ x (λ y (+ x y))))

Listing 17.5 Definition of function addOne after evaluating flat contracts on values.

In the last step we push the remaining contract fragments outwards where possible. Like
unrolling, this step performs no simplification, but it prepares for further simplification steps.
The special > contract accepts any value.

1 let addOne = [((λ plus (λ z ((plus 1) [z @ Number?]))) @ (> → (> → Number?))
2 (λ x (λ y (+ x y))))]

Listing 17.6 Definition of function addOne after pushing flat contracts.

Now, a new function contract is formulated in addOne. As this contract is left in an application,
we can now unroll the contract to the argument values like before.

1 let addOne = [((λ plus (λ z ((plus 1) [z @ Number?])))
2 (λ x (λ y (+ x y)))) @ (> → Number?)]

Listing 17.7 Definition of function addOne after unrolling the lifted contract.

Afterward, the outermost function definition carries a function contract that checks the
return of addOne and one contract is left on addOne’s argument z. However, as the Baseline
Simplification guarantees Strong Blame-Preservation, it is not allowed to perform differently
than the dynamics would do at run-time. No further simplifications are possible.

17.2 Treating Intersection and Union

Our next example considers the full addOne example from the previous chapter, which we
repeat for convenience.

1 let addOne = ((λ plus (λ z ((plus 1) z)))
2 [(λ x (λ y (+ x y)))
3 @ ((Number? → (Number? → Number?)) ∩
4 (String? → (String? → String?)))])

Listing 17.8 Definition of function addOne with an intersection contract.

Here, String? is another flat contract that checks for string values. Like function contracts,
the intersection of two function contracts is a delayed contract and must stay with the
function until the function is used in an application. Moreover, for an intersection, the
context can choose to fulfill the left or the right side of the intersection. Thus, every call to
addOne triggers six predicate checks.

The Baseline Simplification unrolls the intersection contract to all uses of the contracted
value and unfolds the function contracts to the domain and range when in an application
position. The following code snippet demonstrates the unfolding of the intersection contract.

1 let addOne =
2 ((λ plus
3 (λ z [[((plus [[1 @2 String?] @1 Number?]) [[z @2 String?] @1 Number?])
4 @1 Number?] @2 String?]))
5 (λ x (λ y (+ x y))))

Listing 17.9 Definition of function addOne after unfolding the intersection contract.
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Also, the static contract simplifier must maintain additional information in the background to
connect each contract with the enclosing operation. The flat contracts Number? and String?
still belong to different sides of the intersection and no value needs to fulfill both contracts
at the same time. Here, @1 and @2 indicate the originating operand of the intersection. The
order of the contracts corresponds to the dynamic evaluation at run-time.

Like before, the Baseline Simplification checks flat contracts applied to values. Here,
1 satisfies Number?, but violates String?. While Number? can now be removed, information
about a failing contract must remain in the source program. In general, it is not possible
to report a failure statically because we do not know if the code causing the violation (in
this case, function addOne) is ever executed. However, we do not have to keep the original
contract in the expression. For efficiency reasons, the transformation replaces it with a “false
contract” ⊥, whose sole duty is to remember a contract violation and report it at runtime.
The following code snippet shows the result.

1 let addOne =
2 ((λ plus
3 (λ z [[((plus [1 @2 ⊥]) [[z @2 String?] @1 Number?]) @1 Number?] @2 String?]))
4 (λ x (λ y (+ x y))))

Listing 17.10 Definition of function addOne after evaluating flat contracts.

The next snippet shows the complete result after pushing the remaining fragments outwards.

1 let addOne =
2 [[((λ plus (λ z ((plus [1 @2 ⊥]) [[z @2 String?] @1 Number?])))
3 (λ x (λ y (+ x y)))) @1 (> → Number?)] @2 (> → String?)]

Listing 17.11 Definition of function addOne after pushing flat contracts.

Afterward, the outermost expression carries two function contracts that check the return
value of addOne; two contracts are left in the body of addOne to test the argument.

17.3 Splitting Alternatives in Separated Observations

When remembering the last state in Section 17.2, we still check String? even though we know
that right side of the intersection never succeeds. This is because the Baseline Simplification
preserves the blame behavior of the underlying program and is thus not able to deal with
alternatives. However, the Subset Simplification abandons the strong blame preservation to
optimize contracts further. Instead of unfolding intersection and union contracts directly, we
now observe both alternatives in separation and join the remaining contracts or discard a
whole branch if it leads to a violation.

In our example, we see that 1 @2 String? leads to a context failure of the right function
contract of the intersection. Thus, it is useless to keep the other fragments of the right
operand which yields a context violation. We only need to remember the first failing contract
in this branch. The following code snippet shows the result.

1 let addOne =
2 [((λ plus (λ z ((plus [1 @2 ⊥]) [z @1 Number?])))
3 (λ x (λ y (+ x y)))) @1 (> → Number?)]

Listing 17.12 Definition of function addOne after evaluating alternatives.

It remains to check z and addOne’s return to be a number. This are two remaining checks
per use of addOne. However, we still need to keep the information on the failing alternative.
This is required to throw an exception if also the other alternative fails.
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17.4 Lifting Contracts

As shown by the previous examples, contracts on the function’s body are reassembled to a
new function contract, whereas contracts on function arguments must remain to preserve the
order of predicate checks. Continuing the example, our next simplification step constructs
new function contracts from the remaining contracts on the arguments.

1 let addOne =
2 [[((λ plus
3 (λ z ((plus [1 @2 ⊥]) z)))
4 (λ x (λ y (+ x y)))) @1 (Number? → >)] @1 (> → Number?)]

Listing 17.13 Definition of function addOne after lifting contracts on arguments.

This lifting to the function expression will only reorganize existing contracts. The addOne
function now contains another function contract that restricts its domain to number values.
As this step puts contracts on arguments in front, it may change the order in which violations
arise. However, it prepares for further simplifications.

17.5 Condensing Contracts

Continuing the example, the outermost function expression carries two function contracts
which check the argument and the return value of addOne. Moreover, both contracts arise
from the same source contract and belong to the same side of the intersection. Thus, these
function contracts can be condensed to a single function contract on addOne.

1 let addOne =
2 [((λ plus
3 (λ z ((plus [1 @2 ⊥]) z)))
4 (λ x (λ y (+ x y)))) @1 (Number? → Number?)]

Listing 17.14 Definition of function addOne after condensing function contracts.

However, this step is only possible if the argument contract, here Number? → >, is in a negative
position and if the return contract, > → Number? is in a positive position. Otherwise, the
new function contract would blame the wrong party for a contract violation.

17.6 Contract Subsets

Splitting intersection and union contracts into separate observations has another important
advantage: we know that in every branch (observation) every contract must be fulfilled.
We do not have any further alternatives. Based on this we can relate contracts to other
contracts and reuse knowledge about already asserted contracts to reduce redundant checks.
To demonstrate, we construct another version of our running example.

1 let addOne =
2 ((λ plus [(λ z ((plus 1) z)) @ (Positive? → Positive?)])
3 [(λ x (λ y (+ x y)))
4 @ ((Number? → (Number? → Number?)) ∩
5 (String? → (String? → String?)))])

Listing 17.15 Definition of function addOne with two function contracts.

Here, Positive? is another flat contract that checks for positive number values. In addition
to the intersection contract on plus, addOne now contains another function contract which
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requires addOne to be called with a positive number and to return a positive number. After
performing the same transformation steps as before, we obtain the following expressions.

1 let addOne =
2 [[[((λ plus (λ z ((plus 1) z))) (λ x (λ y (+ x y))))
3 @1 (Number? → >)] @1 (> → Number?)] @ (Positive? → Positive?)]
4 ‖
5 let addOne =
6 [((λ plus (λ z ((plus [1 @2 ⊥]) z))) (λ x (λ y (+ x y))))
7 @ (Positive? → Positive?)]

Listing 17.16 Definition of function addOne in a split observation.

The intersection is split into two parallel observations, as indicated by ‖. All contracts were
pushed to the outermost function expression and form a new specification for that function.
However, some of the contract checks are redundant.

For example, the innermost contract on the first branch requires addOne to be called with
a number value, whereas the outermost contract already restricts the argument to a positive
number. As positive numbers are a proper subset of numbers, the inner contract will never
raise a violation if the outer contract is satisfied. Moreover, the middle function contract
requires addOne to return a number value, whereas the outermost contract requires a positive
number value and is thus more restrictive.

To sum up, the contract Positive? → Positive? is more restrictive than both other
contracts on addOne, that is, Number? → > and > → Number?. We say that a contract C is
more restrictive than a contract D, if and only if the satisfaction of C implies the satisfaction
of D.

However, if a more restrictive contract is violated, then this violation does not imply
a violation of the less restrictive contract. But, as in each branch every contract must be
fulfilled, the program already stops with a contract violation. There is no need to check a
less restrictive contract on that branch.

Thus, both “less restrictive” contracts can be removed without changing the blame
behavior of the program. In the first branch, the outermost function contract persists as it
subsumes any other contract, whereas in the second branch both contracts remain.

1 let addOne =
2 [((λ plus (λ z ((plus 1) z))) (λ x (λ y (+ x y)))) @ (Positive? → Positive?)]
3 ‖
4 let addOne =
5 [((λ plus (λ z ((plus [1 @2 ⊥]) z)))
6 (λ x (λ y (+ x y)))) @ (Positive? → Positive?)]

Listing 17.17 Definition of function addOne after removing redundant checks.

Unfortunately, removing the less restrictive contract might change the order of observed
violations, as the less restrictive contract might report its violation first.

Finally, after finishing all transformation steps, the simplifications joins the split observa-
tion to a final expression.

1 let addOne =
2 [((λ plus
3 (λ z ((plus [1 @2 ⊥]) z)))
4 (λ x (λ y (+ x y)))) @ (Positive? → Positive?)]

Listing 17.18 Definition of function addOne after joining split observations.
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17.7 Propagating Blame

In the previous example, we have seen that contracts of a failing alternative can be removed
and only one ⊥ on the first failing term must remain. However, we are only allowed to
remove contracts in the same function body in which the failing contract is. We cannot treat
an entire contract as violated if the violation only occurs in a certain context of the program.
But, ⊥ is also a contract and we can still apply further simplification steps.

To demonstrate, we consider yet another variant of the addOne example.

1 let addOne = ((λ plus (λ z ((plus 1) z)))
2 [(λ x (λ y (+ x y))) @ (String? → (String? → String?))])

Listing 17.19 Definition of function addOne with a failing contract.

After applying some simplification steps we result in the following code snippet:

1 let addOne = ((λ plus (λ z ((plus [1 @ ⊥]) z))) (λ x (λ y (+ x y))))

Listing 17.20 Definition of function addOne after some simplification steps.

Now, all contracts that originate the function contract have been removed and only one ⊥
remains in the function’s body. However, as we know that each call of addOne will result in a
contract violation, we can formalize this as a function contract on addOne.

1 let addOne = ((λ plus [(λ z ((plus 1) z)) @ (⊥ → >)]) (λ x (λ y (+ x y))))

Listing 17.21 Definition of function addOne with a lifted function contract.

The new function contract reports the violation immediately when the function is used in
an application. Like before, this only prepares to apply further simplification steps, i.e., we
may propagate the function contract to the enclosing function definition, or we may unroll
the function contract to all uses of the contracted function and therefore trigger a contract
violation in another context. Like before, propagating is only allowed if we know that each
call of the enclosing function also results in a call of the inner function. The following code
snippet shows the result after propagating the “violation” to the outermost expression.

1 let addOne = [((λ plus (λ z ((plus 1) z))) (λ x (λ y (+ x y)))) @ (⊥ → >)]

Listing 17.22 Definition of function addOne after propagating the function contract.
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To give an insight into the runtime improvements of our contract simplification, we apply
the transformation to different versions of the addOne example from Chapter 17. Our testing
procedure uses the addOne function to increase a counter on each iteration in a while loop.

18.1 The Example Programs

Lacking an implementation for JavaScript, we applied the simplification steps manually to
different versions of the addOne example from Chapter 17. Each example program addresses
a particular aspect and contains a different number of contracts. For example, Example 7
corresponds the addOne function in Section 17.1, and Example 9 corresponds to the function
in Section 17.6. To run the examples, we use the TreatJS contract system for JavaScript and
the SpiderMonkey1 JavaScript engine.

The following listings show the JavaScript implementation of all benchmark programs.

I Example 6. In our first example, we add a simple function contract to function plus
which restricts domain and range of plus to number values. Every use of addOne1 forces three
predicates checks.

1 let addOne1 = (function () {
2 let plus = Contract.assert(function (x, y) {
3 return x + y;
4 }, Contract.Function([typeNumber, typeNumber], typeNumber))
5 let addOne = function (x) {
6 return plus(x, 1);
7 }
8 return addOne;
9 })();

Listing 18.1 Definition of function addOne1.

I Example 7. Our second example adds an intersection contract to function plus. The
contract enables to use plus either with number or string values. Every use of addOne2 forces
6 predicate checks.

1 let addOne2 = (function () {
2 let plus = Contract.assert(function (x, y) {
3 return x + y;
4 }, Contract.Intersection(
5 Contract.Function([typeNumber, typeNumber], typeNumber),
6 Contract.Function([typeString, typeString], typeString)
7 ));
8 let addOne = function (x) {
9 return plus(x, 1);

10 }
11 return addOne;
12 })();

Listing 18.2 Definition of function addOne2.

1 https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey

https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
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I Example 8. The third example extends addOne1 by adding another function contract to
addOne. The contract restricts addOne’s domain to natural numbers and requires a positive
number as return. In combination, every use of addOne3 forces 5 predicate checks.

1 let addOne3 = (function () {
2 let plus = Contract.assert(function (x, y) {
3 return x + y;
4 }, Contract.Function([typeNumber, typeNumber], typeNumber));
5 let addOne = Contract.assert(function (x) {
6 return plus (x, 1);
7 }, Contract.Function([Natural], Positive));
8 return addOne;
9 })();

Listing 18.3 Definition of function addOne3.

I Example 9. The next example extends addOne2 with another function contract on addOne.
In combination, every use of addOne4 forces 8 predicate checks.

1 let addOne4 = (function () {
2 let plus = Contract.assert(function (x, y) {
3 return x + y;
4 }, Contract.Intersection(
5 Contract.Function([typeNumber, typeNumber], typeNumber),
6 Contract.Function([typeString, typeString], typeString)
7 ));
8 let addOne = Contract.assert(function (x) {
9 return plus (x, 1);

10 }, Contract.Function([Natural], Positive));
11 return addOne;
12 })();

Listing 18.4 Definition of function addOne4.

I Example 10. In our fifth example we also overload addOne by performing either string
concatenation or addition, depending on addOne’s input. While adding an intersection contract
to addOne, every use of addOne5 leads to 10 predicate checks.

1 let addOne5 = (function () {
2 let plus = Contract.assert(function (x, y) {
3 return x + y;
4 }, Contract.Intersection(
5 Contract.Function([typeNumber, typeNumber], typeNumber),
6 Contract.Function([typeString, typeString], typeString)
7 ));
8 let addOne = Contract.assert(function (x) {
9 return (typeof x == ’string’) ? plus (x, ’1’) : plus (x, 1);

10 }, Contract.Intersection(
11 Contract.Function([Natural], Positive),
12 Contract.Function([typeString], typeString)
13 );
14 return addOne;
15 })();

Listing 18.5 Definition of function addOne5.
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Benchmark Normal Baseline Subset
time (ms) time (ms) time (ms)

Example 6 39404 27081 (-31.27%) 27043 (-31.37%)
Example 7 87143 58385 (-33.00%) 46085 (-47.12%)
Example 8 66474 54396 (-18.17%) 26518 (-60.11%)
Example 9 114468 85126 (-25.63%) 44633 (-61.01%)
Example 10 148249 107956 (-27.18%) 59970 (-59.55%)
Example 11 295682 200009 (-32.36%) 118579 (-59.90%)

Table 18.1 Runtime values from running the TreatJS contract system on the example programs.
The table shows the execution time of a run with both JIT compilers enabled. Column Normal
gives the baseline execution time of the unmodified program. Column Baseline and column Subset
contain the execution time after applying the baseline or subset simplification, respectively. The
value in parentheses indicates the improvement (in percent).

I Example 11. In our last example we add very fine-grained contracts to plus and addOne.
In this case we state different properties in different function contracts and use intersections
to combine those properties. Before simplifying the contract, every call of addOne6 leads to a
total number 17 predicate checks.

1 let addOne6 = (function () {
2 let plus = Contract.assert(function (x, y) {
3 return x + y;
4 }, Contract.Intersection(
5 Contract.Intersection(
6 Contract.Function([typeNumber, typeNumber], typeNumber),
7 Contract.Function([typeString, typeString], typeString)),
8 Contract.Intersection(
9 Contract.Intersection(

10 Contract.Function([Natural, Positive], Positive),
11 Contract.Function([Positive, Natural], Positive)),
12 Contract.Function([Negative, Negative], Negative))));
13 let addOne = Contract.assert(function (x) {
14 return plus (x, 1);
15 }, Contract.Function([_Natural], _Positive));
16 return addOne;
17 })();

Listing 18.6 Definition of function addOne5.

18.2 Results

Table 18.1, Table 18.2, and Table 18.3 show the execution time required for a loop with 100000
iterations. The numbers indicate that the Baseline Simplification improves the run-time
by approximately 28%, whereas the Subset Simplification makes an improvement up to
62%. The obtained run-time improvement depends directly on number of predicates during
execution. Table 18.4 lists the total number of forced predicate checks.
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Benchmark Normal Baseline Subset
time (ms) time (ms) time (ms)

Example 6 58906 40383 (-31.44%) 40271 (-31.64%)
Example 7 131184 87544 (-33.26%) 69492 (-47.03%)
Example 8 99776 81719 (-18.10%) 40218 (-59.69%)
Example 9 173037 128754 (-25.59%) 66359 (-61.65%)
Example 10 221619 160360 (-27.64%) 88369 (-60.13%)
Example 11 441176 278601 (-36.85%) 163272 (-62.99%)

Table 18.2 Runtime values from running the TreatJS contract system on the example programs.
The table shows the execution time of a run without IonMonkey (but the Baseline JIT remains
enabled). Column Normal gives the baseline execution time of the unmodified program. Column
Baseline and column Subset contain the execution time after applying the baseline or subset
simplification, respectively. The value in parentheses indicates the improvement (in percent).

Benchmark Normal Baseline Subset
time (ms) time (ms) time (ms)

Example 6 81125 56439 (-30.43%) 54945 (-32.27%)
Example 7 186069 124434 (-33.12%) 96271 (-48.26%)
Example 8 136728 111596 (-18.38%) 55186 (-59.64%)
Example 9 240724 179451 (-25.45%) 91034 (-62.18%)
Example 10 315184 225316 (-28.51%) 123852 (-60.71%)
Example 11 597406 404276 (-32.33%) 233124 (-60.98%)

Table 18.3 Runtime values from running the TreatJS contract system on the example programs.
The table shows the execution time of a run without any JIT compilation. Column Normal gives
the baseline execution time of the unmodified program. Column Baseline and column Subset
contain the execution time after applying the baseline or subset simplification, respectively. The
value in parentheses indicates the improvement (in percent).

Benchmark Normal Baseline Subset
predicates predicates predicates

Example 6 300000 200000 (-33.33%) 200000 (-33.33%)
Example 7 600000 400000 (-33.33%) 300000 (-50.00%)
Example 8 500000 400000 (-20.00%) 200000 (-60.00%)
Example 9 800000 600000 (-25.00%) 300000 (-62.50%)
Example 10 1000000 800000 (-20.00%) 500000 (-50.00%)
Example 11 1700000 1200000 (-29.41%) 700000 (-58.82%)

Table 18.4 Runtime values from running the TreatJS contract system on the example programs.
The table shows the total number of predicate check during execution. Column Normal gives the
number of the unmodified program. Column Baseline and column Subset contain the number
of predicate checks after applying the baseline or subset simplification, respectively. The value in
parentheses indicates the improvement (in percent).
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This chapter highlights and discusses related work concerning contract systems, proxy objects,
sandboxes, and contract optimization.

Higher-Order Contracts

Software contracts evolved from Floyd and Hoare’s work on using preconditions, postcon-
ditions, and invariants to reason about the correctness and completeness of a computer
program [46, 58]. Meyer’s Design by Contract™ methodology [76] extends this concept and
formalizes the specification of contracts for all elements of a software system and introduces
the idea of monitoring these contracts while the program executes.

While first introduced with the design of the Eiffel programming language, Findler
and Felleisen [41] brought contracts and contract monitoring into higher-order functional
languages. Software contracts are particularly important for dynamically typed languages
as these languages only provide memory safety and dynamic type safety. Out of the need
to provide reliable software components, contracts have become a prominent mechanism
and attracted a plethora of follow-up works that ranges from semantic investigations [9, 40]
over studies on blame assignment [26, 108] to extensions in various directions: polymorphic
contracts [3, 8], behavioral and temporal contracts [29, 32], etc.

Contract Validation

Contracts may be validated statically or dynamically. Static contract frameworks (e.g.,
ESC/Java [43]) rely on verification techniques such as model checking, theorem proving, or
static program analyses to prove the adherence for a contract. Others, e.g. [113, 104], use
symbolic execution and automated reasoning to verify software contracts.

Purely static contract checking is advantageous as it avoids additional runtime costs,
but existing approaches are either incomplete or limited to a restricted set of properties.
Moreover, static contract checking does not work for a dynamic scripting language like
JavaScript. Given guarantees does not apply to code loaded at runtime or injected via eval.

Dynamic contract monitoring, as proposed in Meyer’s work, enables programmers to
specify contracts for all components of a program without restricting the flexibility of the
underlying programming language. However, runtime monitoring degrades the execution
time of a program as it extends the original program with contract code which needs to be
checked while the program executes.

Monitoring Semantics

In general, the literature comes with three distinct blame semantics: lax, picky, and Indy.
All three approaches differ in the case of how a delayed contract monitor on a subject value
behaves during the evaluation of another assertion. For example, one question is whether the
domain contract on an argument value should be present while evaluating the range contract
of a dependent function contract.

The so-called Lax semantics of Findler and Felleisen [41] erases the contract monitor on a
subject value, whereas the Picky [10] semantics monitors the contract during the evaluation of
another assertion. However, none of the semantics can be seen as correct and complete. The
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lax semantics ignores contract violations caused by other contracts, and the picky semantics
might blame the wrong party for a violation that happens while evaluating another contract.

To overcome this, the Indy semantics of Dimoulas et al. [26] reorganizes the contract
monitor on a subject value such that it treats other contracts as a third party with its own
obligations. This concept enables that each monitor on a subject value remains active during
the evaluation of another contract, but all observed violations during the evaluation of the
contract will blame the contract itself instead of the context or the subject value.

TreatJS provides a generalization of all three monitoring semantics. It reorganizes all
contract monitors on values that flow into the sandbox of another contract. In addition, it
requires to keep the compatibility of contracts into account as it must not mix up contracts
from different sides of an intersection or union.

Contract Operators

Over time, contract facilities have been extended in line with constructions studied in type
theory. This analogy enables to transfer specifications and desired behavior from statically
checked type systems to dynamically checked contract systems. So, there are contract
operators analogous to (dependent) function types [41], product types, sum types [57],
universal types [3], as well as polymorphic types [8, 49]. However, there are no operators
similar to intersection and union types.

Other inspirations came for example from boolean algebras. But, right now no contract
system provides full support for arbitrary boolean combinations of contracts.

Combinations of Contracts

Dimoulas and Felleisen [25] propose a contract composition which is closely related to a
conjunction of contracts. But their operator is restricted to contracts of the same type.
Before evaluating the conjunction, it lifts the operator recursively to flat contracts where
it finally builds the conjunction of the predicate results. Unfortunately, the lifting of a
disjunction is not possible because this would change the meaning of the contract.

Racket’s contract system [44, Chapter 8.1] provides a restricted version of conjunctions
and disjunctions of contracts. The operators and/c and or/c on contracts are designed to
extend the obvious behavior on flat contracts to higher-order contracts. The and/c contract
tests a number of contracts, whereas the or/c contract tests in a predefined order from left
to right if one of its contracts succeeds. The disjunction must resolve in a first-order-way
which contract to choose. Thus, the disjunction fails unless exactly one contract succeeds.

Also, Racket provides an case-> operator [44, Chapter 8.2] that builds a case distinction
of different function contract. However, an arity check at assertion time must select one of
the contracts such that the arity of each function contract must be different.

In summary, Racket’s contract operators are significantly different from intersection and
union. Their operators are inspired by disjunction and conjunction, but they place several
restrictions on using the operators in combination with higher-order contracts. Lacking
support for arbitrary combinations of higher-order contracts is a limitation of most existing
contract systems. A function that accepts two kinds of argument values would require that
both contracts are applied separately, at each call site of that function. But this scenario has
consequences for the space-efficiency [56] of the underlying program.

In contrast, TreatJS enables to combine contracts into a single intersection or union
contract. Our proposal for intersection and union contracts is grounded in the type-theoretic
constructs for intersection and union types. Both operators implement real alternatives
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without further restrictions and enable arbitrary combinations of contracts. However, this
requires not to signal a violation immediately when a contract fails. The contract monitor
must proceed and connect the outcome of each contract with the enclosing operation.
Unfortunately, this makes contract monitoring more expensive.

Embedded Contract Language

Interface specification Languages like the Java Modeling Language (JML) [71] specify the
behavior of a software component in terms of annotation comments to the source files. As
the language itself usually ignores comments, annotation comments require special tools to
verify the specification or to compile them into runtime verifications.

In contrast, a language-embedded contract language exploits the host language itself to
state contracts. Contracts are first-class values that can be stored and reused for several
applications. This approach is advantageous because it neither requires developers to learn a
separate contract language nor is the contract system tied to a particular implementation.
Contract code can use the full expressive power of a programming language, and there is no
need to provide special compilers or tools.

However, there are also disadvantages. The contract execution may get entangled with the
application code. As most language-embedded systems use simple host-language functions
as predicates, a predicate may have side effects and interfere with the execution of the
application code. As the contract code should not change the outcome of a contract abiding
host program, it requires to keep the contract code away from the host program.

Sandboxing JavaScript

Web browsers usually come with browser-side protection mechanism such as the same-origin
policy [93] or the signed script policy [98]. Both approaches follow an all-or-nothing-principle
and do either allow code fragments to access the application state if the fragment comes
from the same origin or a verified source, or it runs the fragments in isolation.

The most closely related work to our sandbox mechanism is the design of access control
wrappers for revocable reference and membranes [21, 81]. A revocable reference is a proxy
for a target object that can be instructed to detach from the target so that the target is
no longer reachable and safe from effects. The fundamental property of both approaches
is memory safety. In memory-safe programming languages, a reference can be seen as a
transferable right to access an underlying object. If a value is not reachable, then it is safe
from effects. However, a proxy membrane itself does not implement a sandbox as, until
detached from the target, it usually forwards all operations to the target object.

Agten et al. [2] implement another JavaScript sandbox using proxies and membranes.
Unlike our work, they place wrappers around sensitive data (e.g., DOM elements) to enforce
policies, and they require that scripts are SES-compliant [94], a JavaScript subset that
prohibits features that are either unsafe or that grant uncontrolled access. To execute scripts
they use a SES-library and a language-embedded JavaScript parser that transforms non-
compliant scripts at runtime. Unfortunately, doing this restricts the semantics if JavaScript’s
as it prohibits some of its dynamic features.

Arnaud et al. [4] provide a sandbox mechanism that is similar to the mechanism of
TreatJS. Both use proxy objects to apply access restriction and to guarantee a side-effect free
contract assertion. In both approaches, the access restrictions apply only to values that cross
the sandbox boundary. However, neither of them implements a full-blown sandbox, because
writing is completely forbidden and always leads to an exception. DecentJS, in contrast,
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guarantees read-only access to the target object and enables sandbox internal modifications
through shadow objects.

Patil et al. [86] present JCShadow, a reference monitor implemented as a Firefox extension.
Their tool provides fine-grained access control to JavaScript resources. Like DecentJS, they
implement shadow scopes to isolate scripts from each other and to regulate object access.
Unlike DecentJS, JCShadow achieves a better runtime performance. While more efficient,
their approach is platform-dependent as it is tied to a specific engine and it requires active
maintenance to keep the implementation in sync with the development of the engine. DecentJS,
in contrast, is implemented as a JavaScript library based on JavaScript’s reflection API,
which is part of the standard.

Most other approaches (e.g., [47, 79, 35, 1]) implement restrictions by filtering and
rewriting untrusted JavaScript code or by removing features that enable uncontrolled access.
For example, Caja [47, 79] compiles JavaScript code in a sanitized JavaScript subset that
can safely be executed on normal engines. However, to function meaningful, Caja restricts
all dynamic features and rewrites the code to a “cajoled” version with additional runtime
checks that prevent access to potentially unsafe function and objects.

Reachability

Static approaches come with some drawbacks, as shown by a number of scientific papers [74,
39, 89]. First, they either restrict the dynamic features of JavaScript, or their guarantees
do not apply to the code generated at runtime. Second, maintenance requires a lot of effort
because the implementation becomes obsolete as the language evolves.

Thus, dynamic effect monitoring and dynamic access control play an important role in the
context of JavaScript security, as shown by many authors [4, 20, 81, 64]. Disjoint reachability
has been the theoretic fundamental of all these approaches. The principle has widespread
use and provides a wealth of features, e.g., it is used to grant access rights [80, 78, 42], to
enforce policies [48, 27], or for parallelism [60].

Effect Monitoring

Richards et al. [92] provide a WebKit implementation to monitor JavaScript programs at
runtime. Rather than performing syntactic checks, they look at effects for history-based
access control and to revoke the effects that violate policies implemented in C++.

Transcript, a Firefox extension by Dhawan et al. [24], extends JavaScript with support
for transactions and speculative DOM updates. Similar to DecentJS, it builds a transactional
scope and permits the execution of unrestricted guest code. Effects within a transaction are
logged for inspection by the host program. They also provide features to commit updates
and to recover from effects of malicious guest code.

JSConTest [54] is a JavaScript framework that helps to investigate the effects of unfamiliar
JavaScript code through access permission contracts. It monitors the execution of JavaScript
code and summarizes the observed access traces to a concise effect description. However, as
JSConTest is implemented as an offline source-code transformation it has known omissions:
there is no support for with and eval, it does not apply to code loaded at runtime, and the
transformation becomes obsolete when the language evolves.

JSConTest2 [64] is a redesign and a reimplementation of JSConTest which monitors
read and write operations on objects using JavaScript proxies. Similar to delayed contract
checking, each proxy object contains an access permission contract that specifies a set of
permitted access paths starting from that object. JSConTest2 addresses some shortcomings
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of the previous version: it works for the full JavaScript language including all dynamic
features and runtime code generation using eval. Compared to our sandbox, JSConTest2
implements a proxy membrane to encapsulate sensitive data. However, its typical use is to
restrict access to an object rather than encapsulating dubious JavaScript code. But, it might
be used in combination with DecentJS to implement policies that further restrict access to
objects visible to the sandbox.

Language-embedded Sandboxes

JSFlow [53] is a full language-embedded JavaScript interpreter that enforces information flow
policies at runtime. Like DecentJS, JSFlow itself is implemented in JavaScript. However,
compared to DecentJS, the JSFlow interpreter causes a significantly higher runtime impact
than our sandbox, which only re-implements the JavaScript semantics on the membrane.

A similar slowdown is reported for js.js [103], another language-embedded JavaScript
interpreter conceived to execute untrusted JavaScript code. Its implementation provides
a wealth of powerful features similar to DecentJS: fine-grained access control, support for
the full JavaScript language, and full browser compatibility. However, its average slowdown
factor is in a range of 100 to 200, and thus it is significantly higher than DecentJS’s.

JavaScript Proxies

The JavaScript proxy API [20] is a JavaScript extension released in the ECMAScript 6 [33]
standard. The API enables a developer to wrap an object in a proxy and to fully interpose
all operations on the object, including property lookup, property update, and function
applications on function objects. Proxies are particularly important to implement dynamic
monitoring facilities on objects and functions as they avoid much of the shortcomings of
static analysis techniques and offline code transformations. Especially in JavaScript static
approaches are often lacking because of JavaScript’s dynamic features.

Thus, many JavaScript systems use proxies to enforce guarantees at runtime. Prominent
examples are the implementation of revocable references [21] and access control wrap-
pers [64, 2], the implementation of contract wrappers [30], and the implementation of
cross-compartment wrappers in SpiderMonkey’s compartment concept [109].

In other languages, proxies have already been used to encapsulate components and
to enforce policies [95] as well as for other dynamic effect systems, meta-level extension,
behavioral reflection, security, or concurrency control [80, 5, 12].

Proxy Object and Equality

One issue with JavaScript proxies is that proxies are always different from their wrapped
target objects. This issue makes it impossible to use JavaScript proxies as contract wrappers,
because the introduction of contracts may influence the meaning of a program.

Racket’s contract system [44, Chapter 8] reports similar problems with noninterference as
we do. But, in Racket, there are two equality operators: eq? and equal?. The first operator
implements pointer equality on objects and is similar to JavaScript’s strict equality operator
===, whereas the second operator performs structural equality. Racket’s proxies are not
transparent with respect to the eq? operator, but they are transparent with respect to equal?.
So, the effect of non-transparent proxies is limited to a small number of programs because
proxies are transparent with respect to structural equality.

Unfortunately, JavaScript does not have a structural equality operator like equal?. The
only safe way to change the transparency of a proxy object is to modify the underlying
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JavaScript engine. Other proposals, for example, the use of the macro system SweetJS [31]
to rewrite all equality tests to a proxy-aware operation, do not work in combination with
eval and hence they do not provide complete interposition.

Furthermore, the PLT group proposes two kinds of proxies, chaperones and imper-
sonators [100]. Both differ in the degree of freedom for redefining the semantics of the
underlying target object. So, a behavior-equal transparent proxy would be a great extension
to JavaScript.

Contract Simplification

Nguyen et al. [83] present a static contract checker that has evolved from Tobin-Hochstadt
and Van Horn’s work on symbolic execution [104]. Their approach is to verify contracts by
executing programs on unknown abstract values that are refined by contracts. If a function
meets its obligation, the corresponding contract gets removed. However, their approach only
applies to the positive side of a function contract.

Our approach on static contract simplification is closely related to symbolic executions.
Both approaches refine values by contracts, either by moving the contract through the term
or by using an abstract value. However, compared to our work, Nguyen et al. address the
opposite direction. Where we unroll a contract to its enclosing context and decompose a
contract into its components, they verify the function’s obligations based on the given domain
contract. In case that the given contract cannot be verified, they retain the contract, and
the whole contract must remain at its original position. They are not able to simplify the
domain portion of a function contract. Moreover, their symbolic verification is not able to
handle true alternatives in the style of intersection and union contracts.

We claim that both approaches are complementary to one another. Our contract simplifi-
cation would benefit from a preceding verification that simplifies the function’s obligations
before unrolling a contract to the enclosing context.

Xu [112] presents another approach that combines static and dynamic contract checking.
Her approach translates contracts into verification conditions to be verified statically. Whereas
satisfied conditions will be removed, there may be conditions that cannot be proved: they
remain in the source program in the form of dynamic checks.
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We have shown the design and implementation of TreatJS, a language embedded, higher-order
contract system for JavaScript which enforces contracts by runtime monitoring. Along the
way, we propose an alternative design for transparent JavaScript proxies that are better
suited to implement contract wrappers, and we have shown how to run JavaScript code in a
configurable degree of isolation to the host application using proxy membranes.

However, to bring user-friendly and efficient contracts to JavaScript, there are still some
issues and open research topics. This chapter identifies several directions open for future
work and extension of the TreatJS contract system.

20.1 Precise Blame Messages

The presence of intersection and union contracts complicates the computation of precise
error messages. This is because the adherence of a contract depends on failures and successes
in different sub-contracts. A failing subcontract does not automatically lead to contract
violation of the top-level assertion. Therefore, it is not possible to report a single value for a
failing predicate. We must always consider the entire contract including all predicates.

To demonstrate, consider the following example with an intersection contract.

1 let addOne = Contract.assert(function addOne(x) {
2 return x+"1";
3 }, Contract.Intersection.from(
4 Contract.Function([typeNumber], typeNumber),
5 Contract.Function([typeString], typeString)
6 ));
7 addOne(1); // throws :PositiveBlame: Subject @ (({0:#typeNumber} → #typeNumber) -

({0:#typeString} → #typeString))

Listing 20.1 Example of a blame message.

In this examples, the context decides to call addOne with a number value. As the context can
choose to use addOne either with number or string values, the violation of typeString on the
domain did not lead to a contract violation. However, the subject value must deal with both
inputs, and as it returns a string for a given number value it violates the intersection.

To sum up, neither the input value 1 nor the return 11 can be labeled as right or wrong
in general. The intersection has two satisfied, and two violated predicates. But only the
violation of typeNumber on the range of the left function contract leads to a top-level contract
violation. This is because typeNumber on the domain is satisfied, so the function must return
a number.

Alternatives require that the contract monitor connects each contract with the enclosing
operation. This connection creates a structure for computing positive and negative blame
according to the semantics of subject and context satisfaction, respectively. However, the
error message is still imprecise as there are several combinations to violate the contract.

So, a next step could be to develop an algorithm that computes precise error messages.
An error message should be clear and concise, and developers should be able to understand
what happens and how to recover the error immediately.
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20.2 Built-in Contract Syntax

Another issue shown by the example in Listing 20.1 is that writing contracts is awkward and
reduces the readability of the underlying program code.

So, having smoother contract definitions would improve the acceptance of contracts.
Contract assertions should be brief and concise. Possible solutions are to use a preceding
contract compiler or by using a macro system like sweet.js. However, the biggest benefit
would come from a built-in contract syntax which is part of the JavaScript standard.

20.3 Native Contract Proxies

We already examined the issue with transparency in various use cases of JavaScript proxies,
and we showed that a significant number of object comparisons would fail when gradually
adding contracts to a program. Therefore, we propose an alternative design for transparent
proxies that is better suited for implementing a contract system like TreatJS. However, the
presented transparent proxy is a straightforward extension of the already existing opaque
proxy, i.e., it provides the same features, and it enables to override the same handler traps
as the opaque counterpart.

But this feature is also disadvantageous. Proxies may redefine the semantics of the
underlying target object arbitrarily, and thus they prevent the optimizing compilers from
optimizing a program efficiently. Examples from Section 7 show that the sole introduction of
a simple forwarding proxy degrades the execution time of a JavaScript program dramatically.

However, Chapter 15 already shows that it is sufficient to restrict contract proxies to
projections. A native observer proxy that implements a projection could be more efficient
as it does not change the semantics of the underlying target object. JIT compilers would
still be able to optimize a program as usual. To make dynamic contract monitoring efficient,
special contract proxies are essential to improve the runtime costs of contract monitoring.

20.4 Realm-aware Pure Functions

TreatJS uses normal JavaScript functions as predicates. However, to guarantee noninterference
with the actual program execution, it executes predicate code in a sandbox. But this
sandboxing impacts the execution of the underlying program and it complicates the notion
of contracts because each reference must be imported before recompiling the function.

Determining the effects of a JavaScript function is nearly impossible as even a simple
property access might be the call of a side-effecting getter function or the call of a handler
trap which causes an undesired behavior. Because of this flexibility, JavaScript would benefit
from a new function constructor that implements a pure function. Such a constructor must
be part of the standard and implemented in the runtime system.

A pure function is a function that only maps its input into an output value without
causing any observable side effects. A pure function can inspect its input, and it can evaluate
pure expressions, including function calls of pure functions and the access to a property that
is bound to getter (if this getter is also a pure function). Moreover, JavaScript proxies would
also benefit as handler traps can be restricted to pure functions to implement an observer
proxy that does not change the semantics of the target object.

To grant effects on certain objects, pure functions could be realm-aware, i.e., they are
bound to a certain realm in which effects are permitted. One example of such a realm could
be the constraint set of a contract monitor, which might be influenced by the evaluation of a
handler trap.
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20.5 Further Contract Constructs

The usability of a contract system is strongly influenced by the variety and quantity of
contract operators. Over time, contract facilities in programming languages have been
extended in line with constructions studied in type theory. There are contract operators
equivalent to dependent (function) types [41], intersection and union types [67], product
types, sum type [57], universal types [3], and recursive types [104]. Other inspirations come
for example from logical operations or temporal logics such as LTL. However, there are still
some constructs missing a contract system would benefit from:

Boolean Operators Right now there is no contract system which provides full support for
boolean combinations of contracts. TreatJS provides a draft implementation of boolean
operators, but its implementation does not strongly correspond to the actions of standard
boolean operators. Whereas the definition of conjunction and disjunction of flat contracts
is obvious, the meaning of negation and the meaning of boolean combinations on higher-
order contracts is too vague. So, for example, it is not clear who to blame if one operand of
a disjunction blames the context whereas the other operand blames the subject. Moreover,
TreatJS’s definition of boolean combinations violates two ground rules of a boolean algebra:
De Morgan’s laws and double negation.

Temporal Contracts TreatJS already provides a draft implementation of temporal contracts
in the style of Disney et al.’s [32] definition of temporal higher-order contracts. The
implementation uses a regular effect grammar over effects to specified temporal properties.
However, the definition only allows combining behavioral and temporal contract at the
top level. A fine-grained combination is not possible.

Stateful contracts By default, all contracts are stateless, i.e., their evaluation only depends
on the subject value itself and other imported values, e.g., the bound argument value of
a dependent function contract. In contrast, a stateful contract encompasses an internal
state which, for example, might be used to remember previous evaluations.
Stateful contracts are particularly important in security-related applications. For example,
an object contract might specify that the context of an object is only allowed to access
either property a or b, but never both. Such a contract must remember the first access
and, depending on this, decide whether a second access is allowed or not.
TreatJS already enables to write stateful predicates using contract constructors. However,
their use and meaning are not always clear as a contract might fail for an incomprehensible
reason, and it is not clear how to satisfy the contract.

20.6 Static Contract Simplification

Run-time monitoring of contracts impacts the execution time of the underlying program by
the insertion of contract checks as well as by the introduction of proxy objects that perform
delayed contract checks on demand. However, experiments from Chapter 16 show that it
is not necessary to check the entire contract at runtime. Some contracts can be verified at
compile-time and others can be simplified to smaller contracts that are collectively cheaper
to check at runtime.

For example, a hybrid contract monitor that combines techniques from Chapter 17 and
Nguyen et al.’s work [83] on soft contract verification could statically pre-evaluate a contract
and reduce the unevaluated parts to a cheaper contract that only contains parts which must
be checked at runtime. Such a system would make contracts more efficient while reducing the
runtime costs and still preserving the flexibility and expressiveness of the contract system.
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This work presents the design and implementation of TreatJS, a language embedded, higher-
order contract system for JavaScript [33] which enforces contracts by runtime monitoring.
Beyond the standard abstractions for higher-order contracts (flat contract, function contracts,
dependent contracts), TreatJS provides contract abstraction and arbitrary combinations of
contracts using intersection and union in combination with the following points:

TreatJS provides a contract constructor that constructs and composes contracts at runtime
using contract abstraction. A contract constructor may contain arbitrary JavaScript code,
and it may encapsulate a local state. Contract constructors are the building blocks for
dependent contracts, parameterized contracts, and recursive contracts.
TreatJS’s blame assignment for higher-order contracts with intersection and union has a
number of novel aspects. First, it uses constraints to create a structure for computing
positive and negative blame according to the semantics of subject and context satisfaction,
respectively. Second, it applies a compatibility check to distinguish contracts from different
sides of an intersection or union, and third, it provides three general monitoring semantics
that handle the visibility of contracts inside of predicate code.
TreatJS gives noninterference a high priority and proposes an implementation that enforces
it. It employs a membrane-based sandbox to keep the predicate code apart from the
normal program execution, and it encapsulates objects that are passed through the
membrane to enforce write protection and to withhold external bindings from functions.
Contracts are guaranteed to exert no side effects on a contract abiding program execution.
TreatJS is implemented as a library in JavaScript. It enables a developer to specify all
aspects of a contract using the full JavaScript language. Proxies implement delayed
contract checking of function and object contracts and guarantee full interposition for
the full JavaScript language, including the with-statement and eval.
The implementation of TreatJS illustrates the need for another proxy constructor that
is better suited for the implementation of contract wrappers. One issue with the actual
contract implementation arises if a contract wrapper is different (not pointer-equal) from
the target object so that an equality test between wrapper and target returns false instead
of true. Thus, TreatJS comes with an implementation of a transparent object proxy which
ensures transparent operations with all JavaScript programs.

We further presented the implementation of DecentJS, a language-embedded sandbox for
full JavaScript. DecentJS uses JavaScript proxies and membranes to run JavaScript code in
isolation to the application state. Proxies implement effect logging on the sandbox membrane,
and they implement shadow objects to enable sandbox internal modifications of that object.
The sandbox itself is written in JavaScript and thus provided as a library. All aspects are
accessible through a sandbox API.

We also measured the impact of contract monitoring on the execution time of JavaScript
programs. The experiments show that the runtime impact of a contract monitor depends on
the particular value that is monitored and on the frequency with which the contracted values
are used. While some programs’ runtime is heavily impacted, others are nearly unaffected.

The case of this impact is 1. that every contract extends the original source with additional
contract code that needs to be checked when the program executes, 2. that the contract
monitor itself causes some runtime overhead and 3. that the introduction of proxy objects that
perform delayed contract checking prevents the optimizing compilers to optimize program
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code involving contracts. Moreover, contracts may end up on hot paths in a program. We
believe that carefully added contracts with the purpose of determining interface specifications
will not seriously influence the run time of the underlying program.

As another novel aspect, we presented the idea of static contract simplification, which
simplifies contracts that cannot be verified entirely at compile time. Contract fragments that
cannot be verified stay in the source program and get lifted to the enclosing interface.

To this end, we specify two sets of transformation rules that give a focus on weak and
strong blame preservation. They use a subcontract relation to reduce contracts that are
subsumed by other contracts, and they split alternatives into separated observation.

Case studies with microbenchmarks show that a hybrid monitor that is based on static
simplification techniques can decrease the total number of predicate checks at runtime and
thus it improves the runtime impact caused by contracts and contract monitoring. Moreover,
the case studies also show that the improvement depends on the granularity of contracts.
More fine-grained contracts enable better improvements.
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