
Blame Assignment for Higher-Order
Contracts with Intersection and Union

Matthias Keil Peter Thiemann
University of Freiburg, Germany

{keilr,thiemann}@informatik.uni-freiburg.de

Abstract
We present an untyped calculus of blame assignment for a higher-
order contract system with two new operators: intersection and
union. The specification of these operators is based on the corre-
sponding type theoretic constructions. This connection makes inter-
section and union contracts their inevitable dynamic counterparts
with a range of desirable properties and makes them suitable for
subsequent integration in a gradual type system.

A denotational specification provides the semantics of a contract
in terms of two sets: a set of terms satisfying the contract and a set
of contexts respecting the contract. This kind of specification for
contracts is novel and interesting in its own right.

A nondeterministic operational semantics serves as the spec-
ification for contract monitoring and for proving its correctness.
It is complemented by a deterministic semantics that is closer to
an implementation and that is connected to the nondeterministic
semantics by simulation.

The calculus is the formal basis of TreatJS , a language embed-
ded, higher-order contract system implemented for JavaScript.

Categories and Subject Descriptors D.3.1 [Formal Definitions
and Theory]: Semantics; D.4.2 [Software/Program Verification]:
Programming by contract

Keywords Blame, Higher-Order Contracts, Intersection, Union

1. Introduction
Contracts and contract monitoring [23] are established tools for
enforcing certain guarantees at run time. While there are uses
and implementations across the whole spectrum of programming
languages, contracts are particularly popular for dynamically typed
languages that offer few guarantees (beyond memory safety) at run
time. In particular, the adoption of contracts in Racket [13] has
gained widespread interest.

Starting from simple assertions, contract facilities in program-
ming languages have been extended in line with constructions stud-
ied in type theory. This analogy enables the transfer of specifications
and desired behavior from statically checked type systems to dynam-
ically checked contract systems. It also facilitates the construction of

gradual systems [26, 27] that mediate between statically and dynam-
ically typed components at run time. Previous implementations of
contract systems support operators analogous to (dependent) func-
tion types [13], product types, sum types [18], as well as universal
types [1] and recursive types [29].

Logical operations are another source of inspiration for contract
operators. For example, Racket [14, Chapter 8] supports some form
of conjunction, disjunction, and negation of contracts. However,
they are a best-effort implementation: they come with an operational
explanation and the operators cannot be freely combined. Theoreti-
cal investigations [7, 29] place similar restrictions on conjunction
and disjunction.

We propose to complement the arsenal of contract operators
with two further operators from type theory: intersection types
and union types. Intersection and union types were conceived for
purely theoretical concerns [2], before they were discovered for
programming languages [24]. Intersection types may be used to
describe overloaded functions [16] and multiple inheritance; union
types are dual to intersection types and come up in connection with
XML typing [20] as well as in soft type systems [32].

By starting from their type theoretic foundation, we analyze
the metatheoretic properties of intersection and union types. This
analysis is our basis for postulating requirements for their dynamic
contract counterparts. We believe that this approach has a number
of advantages when it comes to designing contract operators.

First, many programmers are acquainted with type systems
and their operators. If we can provide contracts with matching
semantics, then they can build on their type-intuitions when using
the corresponding contracts.

Second, matching semantics is important when designing a
gradual type system for a language like TypedRacket [28]. In such
a system it is crucial that the static meaning of a type operator
coincides with the dynamic meaning of its contract counterpart.

Third, when defining operators by derivation from a specification,
they obey a range of useful properties by construction. For example,
our derived intersection and union operators inherit symmetry,
idempotence, and distribution laws with function contracts from
the corresponding type constructions.

Contributions This work presents the theory of blame assignment
underlying TreatJS , a language embedded, higher-order contract
system for JavaScript.1

• We specify the semantics of a contract in a novel denotational
style by a set of terms (subjects) satisfying the contract and a set
of contexts respecting the contract.

• We extend higher-order contracts with unrestricted intersection
and union contracts; they provide dynamic guarantees analogous
to the static guarantees of intersection and union types.

1 http://proglang.informatik.uni-freiburg.de/treatjs/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ICFP’15, August 31 – September 2, 2015, Vancouver, BC, Canada
c© 2015 ACM. 978-1-4503-3669-7/15/08...$15.00

http://dx.doi.org/10.1145/2784731.2784737

375

• We give a nondeterministic specification of contract monitoring
for the full system; the nondeterminism is not essential, but it
simplifies the presentation and the proofs.

• We provide a deterministic implementation and establish a
simulation relation with the specification.

• We prove contract soundness theorems that are novel in two
aspects: they cover subjects and contexts; and they deal with
intersection and union.

Overview Section 2 introduces higher-order contracts and our
novel notion of context satisfaction and then moves on to moti-
vate requirements for intersection and union contracts from their
type-theoretic counterparts. Section 3 explains the denotational se-
mantics of contracts based on an untyped, applied, call-by-value
lambda calculus and establishes some fundamental properties of
the semantics. Section 4 extends the lambda calculus with nonde-
terministic contract monitoring, explains its reduction semantics,
and specifies the constraint-based computation of blame. Section 5
defines the deterministic monitoring semantics, explains the crucial
notion of compatibility, and states the simulation theorem. Section 6
states and explains our contract and blame soundness theorems.
Section 7 discusses related work and Section 8 concludes.

A technical report [21] extends this paper by an appendix with
further examples and proofs of all theorems.

2. Motivation
We briefly recall the standard contracts and the notion of blame from
the literature [13]. Contract satisfaction is usually defined from the
point of view of the contract’s subject; as a novelty, we introduce
the dual concept of context satisfaction, which answers the question
when a context respects a contract in its hole.

In anticipation of the formal framework defined in Section 3,
we let M and N range over lambda terms, V over values, L over
contexts, E over evaluation contexts, and C and D over contracts.
We write M@C for asserting contract C to M ; at run time, M@C
monitors the execution of M and reports violations of C. We also
use S and T informally to range over an unspecified language of
types that includes the language of simple types.

2.1 Higher-Order Contracts and Context Satisfaction
A flat contract, flat(M), where the expressionM denotes a predicate,
is satisfied by subject V if the application M V does not evaluate to
false2. A violation raises positive blame. On the other hand, every
context respects a flat contract because the contract does not restrict
it in any way. Thus, a flat contract never raises negative blame.

A function satisfies a function contractC → D whenever calling
it with an argument that satisfies C implies that the result of the
function satisfies D. If an argument satisfying C provokes a result
that does not satisfy D, then the function contract raises positive
blame: the function, the subject, does not satisfy the contract.

Calling the contracted function with an argument that does not
satisfy C leads to negative blame. Thus, a contract also places an
obligation on the context that it may or may not fulfill. We define
that a context respects the contract C → D if it only provides
arguments satisfying C (as a subject) and puts the result in a context
respecting D. Such a context never causes negative blame.

As an example consider the function add = λx.λy.x + y and
contract C = Pos→ (Even→ Even) where Pos = flat(λx.x > 0)
and Even = flat(λx.x mod 2 = 0). Applying add@C to 0 yields
negative blame: the context � 0 violates the obligation to only
provide positive arguments. Applying (add@C) 1 to 1 also yields
negative blame because it puts the outcome of (add@C) 1 in a

2 It is also satisfied if M V does not terminate.

INTER-I
A ` V : S A ` V : T

A ` V : S ∩ T
SUB-INTER-L
S ∩ T <: S

SUB-INTER-R
S ∩ T <: T

Figure 1. Intersection types

context (� 1) that does not respect the contract Even → Even.
Applying (add@C) 1 to 0 yields positive blame to indicate that add
does not satisfy C.

2.2 Intersection
If a value has both type S and T , then we can also assign it the
intersection type S ∩ T [5]. Conversely, if a value has type S ∩ T ,
then its context may choose to use it as a value of type S or as a
value of type T . This intuition materializes directly in the typing
and subtyping rules for intersection in Figure 1.3

Pierce [25] calls intersection types the natural type-theoretic
analogue of multiple inheritance, where S ∩ T is the name of a
class with the properties of both S and T . Intersection types also
find uses in modeling finitary overloading as in the following typing
for a + operator that stands for addition and string concatenation.

+ : (Num ×Num → Num) ∩ (Str × Str → Str) (1)

The typing rules for intersection suggest the following require-
ments for an intersection contract.

IS0 (Idempotence) A value satisfies C ∩ C iff it satisfies C.

IS1 (Symmetry) A value satisfies C ∩D iff it satisfies D ∩ C.

IS2 (Introduction) A value satisfies the intersection contract C ∩D
iff it satisfies both contracts C and D.

For flat contracts, it is easy to check contract satisfaction and
it is also straightforward to see that flat(λx.P) ∩ flat(λx.Q) =
flat(λx.P ∧Q) is a definition that satisfies the requirements.

For higher-order contracts, monitoring shares the deficiencies of
all contract validation methods that are based on testing: Monitoring
cannot determine contract satisfaction in general, but it can detect
contract failures. Hence, we switch our point of view from contract
satisfaction to contract failure manifested in blame allocated by
detected contract violations. Switching the point of view turns out
to be a matter of negating the requirements.

Recall that positive (negative) blame indicates that a subject
(context) does not satisfy (respect) a contract. This observation is
key to rephrasing the requirements. We concentrate on the most
relevant requirement IS2, the others can be treated analogously.

IS2B L[M@(C ∩ D)] raises positive blame iff L[M@C] raises
positive blame or L[M@D] raises positive blame.

To also capture negative blame in our requirements for an inter-
section contract, we first need to state when a context satisfies such
a contract. The elimination rules SUB-INTER-L/R (via subsumption)
are our guidelines. They indicate that the context may choose to
consider a value of type S ∩ T as either an S or a T . It is, however,
critical that this choice is delayed as much as possible (see example
at the end of this subsection). The choice must happen in an elimina-
tion context F , that is, an evaluation context E that directly applies
an elimination form to its hole: F ::= E[�V] | . . .

IC2 An elimination context respects the intersection contractC∩D
iff it respects contract C or contract D.

3 The use of V in the introduction rule makes it sound for call-by-value [6].

376

UNION-E
A `M : S ∪ T

A, x : S ` N : R A, x : T ` N : R

A ` letx =M inN : R

SUB-UNION-L
S <: S ∪ T

SUB-UNION-R
T <: S ∪ T

Figure 2. Union types

To check this condition effectively, we need to rephrase in terms
of contract failures: If there is a term such that the context provokes
negative blame, then the context cannot respect the contract.

IC2B F [M@(C ∩ D)] raises negative blame iff F [M@C] and
F [M@D] both raise negative blame.

Let’s evaluate this definition with the overloaded + operator
from (1) regarding the type as an intersection contract. If we apply
+ with the intersection contract to a pair of numbers, then the
Str × Str → Str part of the contract raises negative blame, but
the Num × Num → Num part does not. Hence, the intersection
must not raise negative blame, either. The same happens, mutatis
mutandis, when applying to a pair of strings. Applying to a pair
of a number and a string triggers negative blame in both function
contracts. Thus, the intersection must also raise negative blame.

As the intended semantics of + satisfies the intersection contract,
no use of it would ever give rise to positive blame. However, if we
apply a function f with the same intersection contract to a pair of
numbers (strings) but the result fails to satisfy Num (Str), then
blame is assigned to the subject f .

Generally, the subject of an intersection contract C ∩D must
fulfill both contracts C and D. If C = C1 → C2 and D = D1 →
D2 are both function contracts, then any argument has to fulfill
C1 ∪ D1. If the argument contracts overlap, then applying the
function to an element in their intersection must yield a result that
satisfies both, C2 and D2. As an example, consider the contract

(Num ×Num → Num) ∩ (Pos × Pos → Pos) (2)

which describes a function with domain Num × Num that must
map positive arguments to positive results.

Our final example illustrates the need for elimination contexts.

Choose the context L as: let f = � in f 42; f "foo"

Clearly, L respects (Num → Num) ∩ (Str → Str) because
it applies f to a number and to a string, but it respects neither
Num → Num nor Str → Str . This example further indicates that
the checking of an intersection context attached to a value must
happen at the elimination of this value.

2.3 Union
Union types [3] arise naturally in a number of ways: as the dual
of intersection types, from logical and semantical considerations,
and as generalizations of sum and variant types. Again paraphrasing
Pierce [24], union types are related to sum types in the same way as
set-theoretic union is related to disjoint union. They are governed by
the rules in Figure 2. There is no explicit introduction rule; instead
a term of type S or T may be viewed as a term of type S ∪ T via
subsumption. Pierce’s elimination rule UNION-E [24] conveys that
a context that wants to use a value of union type S ∪ T must be
prepared to deal with both S and T because the choice between
them is taken internally by the value.4

4 Among the elimination rules for union types in the literature we have
chosen a simple one that is sound for call-by-value. More general rules exist
[10], but they are not needed in this context.

Analogously to intersection types, the requirements for a union
contract derive from the typing rules for union types.

US0 (Idempotence) A value satisfies C ∪ C iff it satisfies C.

US1 (Symmetry) A value satisfies C ∪D iff it satisfies D ∪ C.

US2 (Introduction) A value satisfies the union contract C ∪D iff it
satisfies contract C or contract D.

It is again easy to see that the union of flat contracts corresponds to
the disjunction of their predicates:

flat(λx.P) ∪ flat(λx.Q) = flat(λx.P ∨Q)

For the higher-order case, we rephrase US2 to blame reporting,
again. This time, it is sufficient to restrict to evaluation contexts E.

US2B E[M@(C ∪ D)] raises positive blame iff E[M@C] and
E[M@D] both raise positive blame.

The elimination rule UNION-E guides the definition of context
satisfaction.

UC2 A context respects the union contract C ∪ D iff it respects
contract C and contract D.

The rephrasing to blame is by now routine.

UC2B L[M@(C ∪D)] raises negative blame iff L[M@C] raises
negative blame or L[M@D] raises negative blame.

As an example consider the contract

(Even → Even) ∪ (Pos → Pos) (3)

which is either satisfied by a function that always maps an even
number to an even number (like λx. − x) or by one that always
maps a positive number to a positive number (like λx.x+ 1). It is
not satisfied by a function that alternates between both return types.
For example, the following function h does not satisfy (3).

h(x) = if (x = 6) then − 6 else 3

Because the context has to respect the union contract (3), any
argument that does not satisfy Even ∩ Pos ought to raise negative
blame. A positive even number is needed to elicit positive blame.
By inspection, we see that 2 and 6 are representative arguments that
exercise all possible behaviors of h. However, h(2) = 3 satisfies Pos
(but fails Even) whereas h(6) = −6 satisfies Even (but fails Pos).
In this example, no single call in isolation raises positive blame to
unveil the insidious behavior of h: at least two tests (e.g., with 2 and
6) are needed elicit positive blame and monitoring must remember
the outcome of previous tests to assign blame properly.

One might ask why US2B is restricted to evaluation contexts.
As an example, we construct a dual situation as in the example that
exhibited the problem for intersection:

L = let f = (λx.�) in (f true; f false)
M = ifx then 1 else true

In this case, L[M@Num] raises positive blame and so does
L[M@Bool]. The interesting point is that L[M@(Num ∪ Bool)]
does not raise positive blame, as each invocation of f creates a
new union contract which can choose a suitable summand for each
value that arises. This behavior conforms to US2B because L is
not an evaluation context. If we wrap the choice into a function
h(x) = ifx then 1 else true, then this function satisfies the contract
Bool→ (Num∪Bool), but not (Bool → Num)∪(Bool → Bool)
as explained in the Even/Pos example.

3. Semantics of Contract Satisfaction
This section defines λCon

V , an untyped call-by-value lambda calculus
with contracts. It first introduces the base calculus and the syntax of

377

L,M,N ::= K | x | λx.M |M N | O(~M)
K ::= false | true | 0 | 1 | . . .
C,D ::= flat(M) | C→D | C ∩D | C ∪D
V,W ::= K | λx.M
E ::= � | O(~V E ~M) | EM | V E
L,M,N ::= A | MN |M N | O(~ML ~N)
V ::= λx.L
A ::= � | V

BETA E[(λx.M)V] −→ E[M{x := V }]
OP E[O(~V)] −→ E[δO(~V)] ~V ∈ dom(δO)

Figure 3. Terms, contexts, and reductions of λV

Jflat(M)K+ = {N |M N 6−→∗ false} (4)

JC→DK+ = {M | ∀N ∈ JCK+.M N ∈ JDK+

∧ ∀N ∈ JDK−.N [M �] ∈ JCK−}
(5)

JC ∩DK+ = JCK+ ∩ JDK+ (6)

JC ∪DK+ = JCK+ ∪ JDK+ (7)

Figure 4. Contract subject satisfaction for λV

contracts, then proceeds to describe contracts and their semantics
for the base calculus, and finally gives the semantics of contract
assertion and blame propagation.

3.1 The Base Language λV
Figure 3 defines syntax and semantics of λV , an applied call-by-
value lambda calculus, and the syntax of contracts. An expression
M is either a first-order constant, a variable, a lambda abstraction,
an application, or a primitive operation. Variables, ranged over by x
and y, are drawn from a denumerable set. Constants K range over a
set of base type values including booleans and numbers.

A contract C is either a flat contract flat(M) defined by a
predicate M , a function contract C → D with domain contract
C and range contract D, an intersection between two contracts
C ∩D, or a union C ∪D.

To define evaluation, V and W range over values and E over
evaluation contexts, which are standard. The small-step reduction
relation −→ comprises beta-value reduction and built-in partial
operations that transform a vector of values into a value. We
write −→∗ for its reflexive, transitive closure and 6−→∗ for its
complement. That is, M 6−→∗ N if, for all L such that M −→∗ L,
it holds that L 6= N . We also write M 6−→ to indicate that there is
no N such that M −→ N .

Contexts L are defined as usual as terms with a hole. We single
out value contexts V that wrap a context in a lambda and answer
contexts A that are value contexts or just a hole. We extend the
reduction relation −→ to contexts by considering the hole as a non-
value term. If context reduction terminates, then it has either reached
a context value, an evaluation context, or a stuck context.

3.2 Contract Satisfaction
Figures 4 and 5 define contract satisfaction for subjects and contexts,
respectively, in terms of the semantics of λV . The set JCK+ is
defined to be the set of closed terms (subjects) that satisfy the
contract C. The set JCK− is the set of closed contexts that respect
C. The definitions are mutually inductive on the structure of C and
the rule set in Figure 5 is coinductively defined. We connect this
semantics to contract monitoring in Sections 4 and 6.

P-IRRED
M 6−→ M /∈ {E,E[V A], E[�N]}

M ∈ JCK−

P-REDUCE

N ∈ JCK− M−→ N
M ∈ JCK−

P-STUCK
V 6= λx.M

E[V A] ∈ JCK−

P-EXPAND
∀M, V. λx.M = λx.M[x]⇒
E[M{x := A[V]}[A]] ∈ JCK−

E[(λx.M)A] ∈ JCK−

P-FLAT

E ∈ Jflat(M)K−
P-OP

E[O(~V� ~N)] ∈ JC→DK−

P-APPLY

N ∈ JCK+ E ∈ JDK−

E[�N] ∈ JC→DK−

P-UNION

E ∈ JCK− E ∈ JDK−

E ∈ JC ∪DK−

P-INTER-L
F ∈ JCK−

F ∈ JC ∩DK−

P-INTER-R
F ∈ JDK−

F ∈ JC ∩DK−

F ::= E[O(~V� ~N)] | E[�N]

Figure 5. Contract context satisfaction (coinductive)

Equation (4) directly reflects the discussion of flat contracts in
Section 2.1. Subject satisfaction for a function contract (5) also
follows the previous discussion but with an extra twist. If the
argument contract of a function M is itself a function contract,
then M must put its argument V , say, in a context that satisfies
C (i.e., it must not pass an argument that does not subject-satisfy
C), but only under the assumption that the application M V itself
happens in a context satisfying D. To appreciate the context part
of the definition consider that λx.x ∈ JC→CK+, in particular for
C = flat(λx.x 6= 0)→ flat(λx.x 6= 0). However, λx.x cannot
guarantee C for its argument if its context does not guarantee C.
The term ((λx.x)(λy.1/y))0 demonstrates such a case.

Equation (6) for satisfaction of intersection corresponds to the
requirement IS2 and Equation (7) for union corresponds to US2.

The set of contexts that respect a contract C is defined by
induction on the structure of C and then coinductively at each level
by the rule set in Figure 5. It relies on context reduction.

Generally, a context that never exercises its hole respects all
contracts. Rule P-IRRED covers all the cases where context reduc-
tion gets stuck before the hole gets involved in a reduction—the
exempted cases are covered by other rules. Irreducible contexts
include the empty context � and contextual values V .

Rule P-REDUCE closes respecting contexts under reduction. Its
coinductive interpretation guarantees that contexts that diverge
before the hole gets involved respect all contracts. P-STUCK covers
the case where an application of a value V to an argument involving
a hole cannot reduce because V is not a function.

Rule P-EXPAND treats the case where the hole is involved as part
of the argument in a beta-reduction. Before explaining the general
rule, it is easier to first consider two special cases of P-EXPAND

where x occurs at most once in the body M of the function.
If x does not occur free in M , then L[(λx.M)�] ∈ JCK−

because the subject disappears on reduction and cannot be exercised
further on. In this case, the premise of P-EXPAND is vacuously true
because there is no contextM such that λx.M = λx.M[x].

378

If x occurs exactly once in M , then the composed context
E[M[A]] must be satisfying. In this case,M does not contain free
occurrences of x so that the substitutionM{x := A[V]} =M has
no effect in rule P-EXPAND.

Otherwise, the rule requires that each occurrence of x in λx.M
that is bound by the lambda gives rise to a contract respecting
context for all values V substituted for the remaining occurrences
of x. As an example, consider checking whether the context E =
(λx.N xx)� respects contract C→D. Thus, we want to ensure
that (λx.N xx) [W @ (C → D)] does not raise negative blame.
Now the latter term reduces to N (W @(C→D)) (W @(C→D))
so to ensure that E ∈ JC → DK− it must be the case that both
N � (W @ (C→D)) ∈ JC→DK− and N (W @ (C→D))� ∈
JC→DK−. AsW@(C→D) can be an arbitrary value that satisfies
C→D, which cannot be generated from the existing context E,
the rule P-EXPAND quantifies over all values V and asks that each
N �V ∈ JC→DK− and N V � ∈ JC→DK−.

The remaining rules are inductive and address specific forms of
contract. Every evaluation context fulfills a flat contract as expressed
by rule P-FLAT. Rule P-OP considers the case where the hole is an
argument of a built-in operation. As such an operation never invokes
its arguments, this context respects any function contract. Rule
P-APPLY is the archetypal context respecting C→D that applies
the subject to an argument satisfying C and puts it in a context
satisfying D.

An evaluation context respects a union contract C ∪ D if it
respects both C and D according to rule P-UNION. An elimination
context F respects an intersection contract C ∩D if it respects C
or D as codified in rules P-INTER-L and P-INTER-R.

This semantics of contract satisfaction and contract respect is
not computable, in general. Fortunately, the non-computability
is not an issue for the contract monitoring application that we
have in mind. First, there are many special cases involving flat
contracts, for example, that are decidable. But more importantly,
our foremost goal is finding contract violations! Such a violation is
a concrete, computable evidence that a subject (context) does not
satisfy (respect) a contract. Such evidence can be constructed by
the contract monitor specified in Section 4, after establishing some
basic metatheoretical properties of contract satisfaction.

3.3 Properties of Contract Satisfaction
We start with some easy consequences of the semantics definition.
Proposition 3 is needed for contract normalization in Section 4.2.
We write LLM for the set ranged over by metavariable L.

Proposition 1. Jflat(M)K− = LLM

Proposition 2. JC ∪DK− = JCK− ∩ JDK−.

Proposition 3. JC0 ∩ (C ∪D)K− = J(C0 ∩ C) ∪ (C0 ∩D)K−.

Due to the untyped setting of our calculus, the semantics of
a contract may contain some unexpected expressions. One key
observation is that an expression that does not reduce to a value
(including expressions that diverge or get stuck) fulfills any contract.

Proposition 4. Suppose that M 6−→∗ V . Then M ∈ JCK+.

Dually, a context that does not reduce to an evaluation context
respects any contract.

Proposition 5. Suppose that L 6−→∗ E. Then L ∈ JCK−.

Furthermore, any subject fulfills a flat contract whose “predicate”
expression does not evaluate to a function.

Proposition 6. If N 6−→∗ λx.M , then ∀L: L ∈ Jflat(N)K+.

An expression that does not evaluate to a function fulfills any
function contract.

M,N += M @b C || V @ι check(M) | blame[

I, J ::= flat(M)
Q,R ::= C→D | Q ∩R
U, V,W += || V @ι Q
b ::= [|| ι

E += E @b C || V @ι check(E)
K ::= � | K ∩D | Q ∩ K

κ ::= [J(ι) | bJ(W) | bJ(ι→ ι) | bJ(ι ∪ ι) | bJ(ι ∩ ι)
ς ::= · | κ : ς

The nondeterministic calculus requires two further extensions.

M,N += || 〈M 8κ N〉
E += || 〈E 8κ N〉 | 〈M 8κ E〉

Figure 6. Syntax extension for λCon
V

Proposition 7. If L 6−→∗ λx.M , then L ∈ JC→DK+.

The semantics of contracts is closed under reduction.

Proposition 8 (Closure under reduction).

1. If M −→ N and M ∈ JCK+, then N ∈ JCK+.
2. IfM−→ N andM∈ JCK−, thenN ∈ JCK−.

The semantics satisfies all requirements from Section 2.2 and 2.3.

Theorem 1. The semantics for subject and context satisfaction
fulfill IS0, IS1, IS2, IC2, US0, US1, US2, and UC2.

Our intuitions about intersections and unions of flat contracts are
supported by straightforward calculation with the semantics.

Theorem 2. For all L and N :

1. Jflat(λx.L) ∩ flat(λx.N)K+ = Jflat(λx.L ∧N)K+

2. Jflat(λx.L) ∪ flat(λx.N)K+ = Jflat(λx.L ∨N)K+

3.4 Discussion
At first sight, our semantics may seem very liberal because terms
that diverge or get stuck are contained in the satisfaction semantics
JCK+ of any contract (Proposition 4). But this design just reflects
that neither diverging computations nor errors are observable. It
would be easy to implement another point of view in our calculus
by mapping errors in primitive operations to newly introduced error
constants and by making them total and strict in errors.

Several contract systems check that the subject of a function
contract is indeed a function, whereas our semantics accepts any
non-function as satisfying any function contract (Proposition 7).
However, the function contract C 7→ D that first checks its subject
to be a function may be implemented as syntactic sugar with an
intersection contract:

C 7→ D := flat(isFunction) ∩ (C→D)

This implementation cleanly separates the first-order part of the
contract from its higher-order part up front, which happens under
the rug in implemented systems.

4. Contract Monitoring
This section extends the base calculus λV to a calculus λCon

V , which
serves as a nondeterministic specification for contract monitoring.
We deliberately present the nondeterministic version because it is
easier to understand and because it enables us to prove the properties
of the calculus in Section 6 whereas the proof details become too
complex when addressing the deterministic version directly.

379

ACTIVATE ς, E[V @[C] −→ [J(ι) : ς, E[V @ι C] ι 6∈ ς
LEFT ς, E[V @ι (K[I] ∩D)] −→ ιJ(ι1 ∩ ι2) : ς, E[(V @ι1 I) @ι2 K[D]] ι1, ι2 6∈ ς
RIGHT ς, E[V @ι (Q ∩ K[I])] −→ ιJ(ι1 ∩ ι2) : ς, E[(V @ι1 I) @ι2 K[Q]] ι1, ι2 6∈ ς
N-UNION ς, E[V @ι (K[C ∪D])] −→ ιJ(ι1 ∪ ι2) : ς, E[〈V @ι1 K[C] 8ιJ(ι1∪ι2) V @ι2 K[D]〉] ι1, ι2 6∈ ς

I-FLAT ς, E[V @ι flat(M)] −→ ς, E[V @ι check(M V)]
I-UNIT ς, E[V @ι check(W)] −→ ιJ(W) : ς, E[V]

N-FUN ς, E[(V @ι (C→D))W] −→ ιJ(ι1→ ι2) : ς, E[(V (W @ι1 C)) @ι2 D] ι1, ι2 6∈ ς
N-INTER ς, E[(V @ι (Q ∩R))W] −→ ιJ(ι1 ∩ ι2) : ς, E[〈(V @ι1 Q)W 8ιJ(ι1∩ι2) (V @ι2 R)W 〉] ι1, ι2 6∈ ς

D-CON-OP
U ::= K | λx.M

ς,E[O(~U(V @ι Q) ~W)] −→ ς, E[O(~UVW)]

I-BASE
M −→ N

ς,M −→ ς,N

D-SPLIT-APP
ς, E[〈L 8κM〉N] −→ ς, E[〈LN 8κM N〉]

D-APP-SPLIT
ς, E[V 〈L 8κM〉] −→ ς, E[〈V L 8κ V M〉]

D-SPLIT-OP

ς, E[O(~U〈L 8κM〉 ~M] −→ ς, E[〈O(~UL ~M) 8κ O(~UM ~M)〉]

D-SPLIT-CHECK
ς, E[V @ι check(〈L 8κM〉)] −→ ς, E[〈V @ι check(L) 8κ V @ι check(M)〉]

D-SPLIT-CON

ς, E[〈L 8κM〉@b C] −→ ς, E[〈L@b C 8κM @b C〉]
I-SPLIT-COLLAPSE
ς, E[〈M 8κM〉] −→ ς, E[M]

Figure 7. Dynamics of λCon
V

4.1 Additional Syntax
Figure 6 defines the syntax of λCon

V as an extension of λV in two
steps. The first step introduces constructs for contract monitoring in
general. The second step adds the interleaving expression specific to
nondeterministic monitoring. Intermediate terms that do not occur
in source programs appear after double bars “||”.

The only new source term is contract monitoring M @b C. Its
adornment b is drawn from an unspecified denumerable set of blame
identifiers, which comprises blame labels [that occur in source
terms and blame variables ι that are introduced during evaluation.

In the intermediate term V @ι check(M), the term M represents
the current evaluation state of the predicate of a flat contract. The
blame[expression signals a contract violation at label [. The two
subcontracts of intersection and union contracts are monitored
independently using the interleaving expression 〈M 8κ N〉. The
superscript κ is the constraint generated on introduction of the
interleaving and indicates whether the interleaving stands for an
intersection or for a union.

To specify the dynamics, we refine the syntax of contracts.
Contracts I and J stand for immediate, flat contracts that can
be evaluated right away. A delayed contract, Q or R, is a finite
intersection of function contracts. It stays with a value until it is used.
Consequently, values are extended with V @ι Q which represents a
value wrapped in a delayed contract that is to be monitored when the
value is used in an elimination context (e.g., on function application).

The extended set of values forces us to revisit the built-in
operations. We posit that each partial function δO first erases
all contract monitoring from its arguments, then processes the
underlying λV -values, and finally returns a λV -value.

Evaluation contexts are extended in the obvious way: a contract
monitor is only applied to a value and a flat contract is checked
before its value is used. To reflect the independence of monitoring
subcontracts of intersections and unions, interleavings reduce non-

deterministically: each evaluation step may choose to reduce the left
or right component.

Contract contexts K are needed for normalizing nested appli-
cations of intersection and union contracts. They are explained in
Section 4.2.

In λCon
V , contract monitoring occurs via constraints κ imposed

on blame identifiers. There is an indirection constraint and one kind
of constraint for each kind of contract: flat, function, intersection,
and union. Constraints are collected in a list ς during reduction.

4.2 Reduction
Figure 12 specifies the small-step reduction semantics of λCon

V

as a relation ς,M −→ ς ′, N on pairs of a constraint list and
an expression. Instead of raising blame exceptions, the rewriting
rules for contract enforcement generate constraints in ς: a failing
contract must not raise blame immediately, because it may be nested
in an intersection or a union. The sequence of elements in the
constraint list reflects the temporal order in which the constraints
were generated during reduction. The latest, youngest constraints
are always on top of the list. Section 4.3 explains the semantics of
the constraints and Section 4.3.2 explains the role of the temporal
order for the semantics.

The rule ACTIVATE introduces a fresh name for each new instan-
tiation of a monitor in the source program. It is needed for technical
reasons to establish the simulation relation with the deterministic
version of the semantics.

The first group of rules LEFT, RIGHT, and N-UNION implements
contract normalization. Normalization has two purposes. Rules
LEFT and RIGHT factorize a contract into an immediate part I and
a rest contract. The idea is that a flat contract I that is nested
only in intersections (cf. the constraint context K) may be pulled
out and checked directly. The logical justification for these rules
is associativity of intersection (and union): for instance, JK[I] ∩

380

DK+ = JI ∩ K[D]K+; so their satisfaction semantics stays the
same. Both rules also install constraints that combine the contract
satisfaction of the subcontracts to the satisfaction of the intersection.

The N-UNION rule embodies the introduction-site choice of the
union. If the current contract has the form K[C ∪D] (i.e., a union
nested in a context of intersections), then the union is pulled out
by distributivity (Proposition 3) resulting in K[C] ∪ K[D]. Then
the expression is split to monitor K[C] and K[D] in isolation and a
constraint is installed to combine the outcomes of monitoring K[C]
and K[D] according to US2 and UC2. Thus, for each value with a
union contract, the constraint generated by this rule application is
the single point that chooses between K[C] and K[D].

Flat contracts get evaluated immediately. Rule I-FLAT starts
checking a flat contract by evaluating the predicate M applied to
the subject value V . After predicate evaluation, rule I-UNIT picks
up the result and stores it in a constraint.

The reduction rules N-FUN and N-INTER define the behavior
of a contracted value under function application, that is, in a
particular elimination context. Rule N-FUN handles a call to a
value with a function contract. Different from previous work, the
blame computation is handled indirectly by creating new blame
variables for the domain and range part; a new constraint is added
that transforms the outcome of both portions according to the
specification of the function contract. Rule N-INTER duplicates the
function application for each conjunct to monitor them concurrently
in isolation. The generated constraint serves to combine the results
of the subcontracts. Unlike the union contract, splitting for an
intersection occurs at each use of the contracted value, which
implements the choice of the context.

Built-in operations can “see through” contracts (rule D-CON-OP).
An interleaving may be collapsed nondeterministically if its com-
ponents are equal (IPAIRCOLLAPSE). Finally, reductions of λV are
lifted to λCon

V using rule IBASE. This choice implies that an OP re-
duction only returns a λV value that does not contain contracts.

The rules D-SPLIT-APP, D-APP-SPLIT, D-SPLIT-CON, D-SPLIT-OP,
and D-SPLIT-CHECK deal with occurrences of interleavings in con-
texts where they may hinder other reductions. They nondeterministi-
cally duplicate the immediately surrounding construct.

4.3 Constraints
The dynamics in Figure 12 use constraints to create a structure for
computing positive and negative blame according to the semantics
of subject and context satisfaction, respectively. To this end, each
blame identifier b is associated with two truth values, b.subject and
b.context. Intuitively, if b.subject is false, then the contract b is not
subject-satisfied and may lead to positive blame for b. If b.context
is false, then there is a context that does not respect contract b and
may lead to negative blame for b. But the story is more complicated.

4.3.1 Constraint Satisfaction
A solution µ of a constraint list ς is a mapping from blame identifiers
to records of elements of B = {t, f}, such that all constraints are
satisfied. We order truth values by t @ f and writev for the reflexive
closure of that ordering. Formally, we specify the mapping by

µ ∈ (LbM× {subject, context})→ B

and constraint satisfaction by a relation µ |= ς , which is specified in
Figure 9. In the premisses, the rules apply a constraint mapping µ
to boolean expressions over constraint variables. This application
stands for the obvious homomorphic extension of the mapping.

Every mapping satisfies the empty list of constraints (CS-EMPTY).
The cons of a constraint with a constraint list corresponds to
the intersection of sets of solutions (CS-CONS). The indirection
constraint just forwards its referent (CT-IND).

τ(V) =


f V = false
τ(W) V =W @ι Q

t otherwise

Figure 8. Mapping values to truth values

CS-EMPTY
µ |= ·

CS-CONS
µ |= κ µ |= ς

µ |= κ : ς

CT-IND
µ([.subject) w µ(ι.subject) µ([.context) w µ(ι.context)

µ |= [J(ι)

CT-FLAT
µ(b.subject) w τ(V) µ(b.context) w t

µ |= b J V

CT-FUNCTION
µ(b.subject) w µ(ι1.context∧(ι1.subject⇒ι2.subject))

µ(b.context) w µ(ι1.subject∧ι2.context)
µ |= b J ι1→ ι2

CT-INTERSECTION
µ(b.subject) w µ(ι1.subject∧ι2.subject)
µ(b.context) w µ(ι1.context∨ι2.context)

µ |= b J ι1 ∩ ι2

CT-UNION
µ(b.subject) w µ(ι1.subject∨ι2.subject)
µ(b.context) w µ(ι1.context∧ι2.context)

µ |= b J ι1 ∪ ι2

Figure 9. Constraint satisfaction

In rule CT-FLAT, W is the outcome of the predicate of a flat
contract. The rule sets subject satisfaction to f if W = false and
otherwise to t, where the function τ(·) : LV M→ B translates values
to truth values by stripping delayed contracts (see Figure 8). A flat
contract never blames its context so that b.context is always true.

The rule CT-FUNCTION determines the blame assignment for a
function contract b from the blame assignment for the argument
and result contracts, which are available through ι1 and ι2. Let’s
first consider the subject part. A function f satisfies contract b if it
satisfies its obligations towards its argument ι1.context and if the
argument satisfies its contract then the result satisfies its contract,
too. The first part arises if f is a higher-order function, which may
pass illegal arguments to its function-arguments. The second part is
partial correctness of the function with respect to its contract.

A function’s context (caller) satisfies the contract if it passes
an argument that satisfies contract ι1.subject and uses the result
according to its contract ι2.context. The second part becomes non-
trivial with functions that return functions.

The rule CT-INTERSECTION determines the blame assignment
for an intersection contract at b from its constituents at ι1 and
ι2. A subject satisfies an intersection contract if it satisfies both
constituent contracts: ι1.subject∧ι2.subject (cf. IS2). A context,
however, has the choice to fulfill one of the constituent contracts:
ι1.context∨ι2.context (cf. IC2).

Dually, the rule CT-UNION determines the blame assignment
for a union contract at b from its constituents at ι1 and ι2 ac-
cording to US2 and UC2. A subject satisfies a union contract if

381

[

∩

→

Num Num

→

Str Str

(t, f) (t, f) (t, t) (t, t)

(f, t) (t, t)

(t, t)

(t, t)

[

... ∩

→

Num Num

→

Str Str

(t, t) (t, f) (t, f) (t, f)

(t, f) (f, t)

(t, t) (t, f)

(t, f)

Figure 10. Blame calculation for addOne = λx.(x+”1”) with
contract (Num→ Num) ∩ (Str→ Str). The top picture shows the
constraint graph after applying addOne to the string ”1” (first call).
The bottom picture shows the extended graph after applying addOne
to the number 1 (second call). Each node is a constraint. Each edge
is a reference to a blame variable. The labeling next to the arrow
shows the record (context, subject) assigned by the solution of the
underlying constraint list. The root ([) collects the outcome of all
delayed contract assertions.

it satisfies one of the constituent contracts: ι1.subject∨ι2.subject.
A context, however, needs to fulfill both constituent contracts:
ι1.context∧ι2.context, because it does not know which contract is
satisfied by the subject.

Figure 10 illustrates blame calculation with constraints using
the function addOne = λx.(x+”1”) with the contract (Num →
Num) ∩ (Str → Str). After applying addOne to ”1” the contract
(Num → Num) fails and blames the context, whereas the second
contract (Str→ Str) succeeds. Because the context of an intersection
may choose which side to fulfill, the intersection is satisfied.

A second call which applies addOne to 1 leads to blame: Num→
Num fails, blaming the subject, because the result is a string;
Str→ Str fails and blames the context. In this case, the intersection
contract blames the subject because it has to satisfy both contracts.

4.3.2 Solving Constraints
Computing a blame assignment boils down to computing a solution
for a constraint list ς . To this end, we define its dependency graph
DG(ς). Its nodes are blame identifiers and there is an edge from ιk
to b if there is a constraint with b on the left side and ιk on the right
side: bJ(. . . ιk . . .) ∈ ς . An easy induction on reduction sequences
(Figure 12) shows that DG(ς) is always a forest.

Proposition 9. If ∅,M −→∗ ς,N , then DG(ς) is a forest rooted
in the blame labels [.

A least solution LSol(ς) ∈ (LbM × {subject, context}) → B
can be computed for any constraint list ς arising during reduction
by evaluating the constraints for the blame variables in some
topological order consistent with DG(ς). That is, LSol(ς) |= ς
and LSol(ς) v µ for all µ |= ς . Recall that, due to the ordering on

·
[]

((λf.f) @0 ((P → P)→ N)) (λx.− x) 42
(1)−→ 0J(1→2) : ·

[0 7→ (t, t), 1 7→ (t, t), 2 7→ (t, t)]
(((λf.f) ((λx.− x) @1 (P → P))) @2 N) 42

(2)−→ 0J(1→2) : ·
[0 7→ (t, t), 1 7→ (t, t), 2 7→ (t, t)]

(((λx.− x) @1 (P → P)) @2 N) 42
(3)−→ 2J(ff) : 0J(1→2) : ·

[0 7→ (t, f), 1 7→ (t, t), 2 7→ (t, f)]
((λx.− x) @1 (P → P)) 42

(4)−→ 1J(3→4) : 2J(ff) : 0J(1→2) : ·
[0 7→ (t, f), 1 7→ (t, t), 2 7→ (t, f), 3 7→ (t, t), 4 7→ (t, t)]

((λx.− x) (42 @3 P)) @4 P
(5)−→ 3J(tt) : 1J(3→4) : 2J(ff) : 0J(1→2) : ·

[0 7→ (t, f), 1 7→ (t, t), 2 7→ (t, f), 3 7→ (t, t), 4 7→ (t, t)]
((λx.− x) 42) @4 P

(6)−→ 3J(tt) : 1J(3→4) : 2J(ff) : 0J(1→2) : ·
[0 7→ (t, f), 1 7→ (t, t), 2 7→ (t, f), 3 7→ (t, t), 4 7→ (t, t)]

(−42) @4 P
(7)−→ 4J(ff) : 3J(tt) : 1J(3→4) : 2J(ff) : 0J(1→2) : ·

[0 7→ (f, t), 1 7→ (t, f), 2 7→ (t, f), 3 7→ (t, t), 4 7→ (t, f)]
−42

Figure 11. Example reduction sequence. Each item comprises the
constraint list, its solution (in gray), and the term

B, the function LSol(·) with LSol(·)(b, x) = t is the least element
of (LbM× {subject, context})→ B.

To establish our technical results, we would like to argue that
constraint solutions grow monotonically when the constraint list
is extended. Unfortunately, the least solution LSol(κ : ς) for an
extended constraint list is not always comparable to the solution
LSol(ς) for the original list.

For an example, consider the reduction sequence in Figure 11
where P and N are shorthands for the contracts Pos and Num
and tt and ff stand for true and false. We write the subject part of
the respective least solutions as a mapping from blame variable to
truth value. In the last reduction step (7), the least solution of the
constraint list changes non-monotonically: 0.subject changes from f
to t. If we included the context blame, we would see that at the same
step 0.context changes from t to f: Blame is transferred from the
subject to the context due to the non-monotonicity of implication.

Let’s analyze this baffling situation. When enforcing a function
contract, execution first finds a violation of the range contract—
giving rise to subject blame—and then a violation of the domain
contract—giving rise to context blame. One may argue that a
contract monitor would already raise blame in step (3) when
0.subject flips to f. However, this contract may appear nested in
a union contract so that blaming would be delayed and reduction
would continue as in the above reduction.

Our choice, which we make formal in Section 6, is to follow the
lead of implemented systems (without union and intersection) that
always report the first contract violation. We capture this preference
for the first violation by defining a monotone constraint semantics,
which first cleans the constraint list from later constraints that violate
monotonicity and then takes the least solution.

382

Definition 1. The monotone constraint semantics is JςK =
LSol(Clean(ς)) where Clean() : LςM→ LςM is defined by

Clean(·) = ·

Clean(κ : ς) =

{
κ : ς ′ LSol(ς ′) v LSol(κ : ς ′)

ς ′ otherwise
where ς ′ = Clean(ς)

Proposition 10. For all ς and κ, JςK v Jκ : ςK.

The implementation is straightforward: each constraint bJ(. . .)
is only allowed to “fire” once and sets either b.subject or b.context
to f. Afterwards the constraint becomes inactive.

4.3.3 Introducing Blame
To determine whether a constraint list ς is a blame state (i.e.,
whether it should signal a contract violation), we check whether the
semantics JςK maps any source-level blame label [to false.

Definition 2. ς is a blame state for blame label [iff

JςK([.subject∧[.context) w f.

ς is a blame state if there exists a blame label [such that ς is a
blame state for this label.

To model reduction with blame, we define a new reduction
relation ς,M 7−→ ς ′,M ′ on configurations. It behaves like −→
unless ς is a blame state. In a blame state, it stops signaling the
violation. There are no reductions with blame.

ς,M −→ ς ′, N
ς is not a blame state
ς,M 7−→ ς ′, N

ς is blame state for [

ς,M 7−→ ς, blame[

4.3.4 Lifting Definitions
The present section tacitly lifts various semantic notions and results
from λV to the extended calculus λCon

V with monitoring. In this
subsection, we make this lifting precise.

A number of definitions and results in Section 3 refer to reduc-
tion and context reduction in λV . These definitions (semantics of
contracts and the results in Section 3.3) are lifted to λCon

V by taking
M −→ N as a shorthand for ∀ς.∃ς ′.ς,M 7−→ ς ′, N (top-level
reduction with blame). The same lifting applies toM−→ N .

The coinductive definition of JCK− in Figure 5 is extended
with additional rules for the extra syntactic constructs. Most of the
new rules just cater to reductions with a hole in place of the value.
Context reduction needs to be extended, which is a straightforward.

5. Deterministic Monitoring
The calculus λCon

V d provides a deterministic reduction semantics for
contract monitoring. Its syntax is identical to λCon

V , but without the
interleaving expression (i.e., Figure 6 top only). Figure 12 specifies
its one-step reduction relation on expressions. It is surrounded by a
top level reduction ς,M 7−→ ς ′, N that reduces M only if ς is not
a blame state according to Definition 2. Its definition is analogous
to the one in Section 4.3.3

Just like nondeterministic reduction, contract monitoring nor-
malizes contracts before it starts their enforcement. This part of
the rule set is identical to the nondeterministic rules, except for the
rule D-UNION which implements union contracts by enforcing the
contracts in some order instead of interleaving their execution.

The rules I-FLAT and I-UNIT that deal with flat contracts are
identical to the nondeterministic version.

The remaining rules implement monitoring of delayed contracts.
As in λCon

V , the assertion of a delayed contract assumes that the
value is a function and wraps it so that the contract is checked when

the function is applied. The rules D-FUN, D-INTER, and DROP act
when such a wrapped value is applied to an argument W . Compared
to λCon

V , these rules need to take into account the new notion of
compatibility. Roughly, two flat contract executions are compatible
if they belong to the same component of a nested union/intersection.

In λCon
V , execution is compartmentalized by interleave expres-

sions that mimic the nesting of currently active union and intersec-
tion contracts. As we saw in the D-UNION rule, λCon

V d intermingles
the execution of contracts from all compartments. Compatibility of
a contract with its evaluation context is defined such that contracts
from different compartments are never mixed up. We come back to
compatibility after explaining the rules.

The rule D-FUN handles the call of a contracted function. If
differs from the λCon

V -rule N-FUN only in the side condition of
compatibility. Rule D-INTER sequentially applies both contracts in
terms of a new constraint, but only if the intersection is compatible
with the context. Rule DROP drops a delayed contract that is not
compatible with the current evaluation context.

5.1 Compatibility
To illustrate the need for compatibility, we consider the contract

C = ((P 7 →5 P 8)→1 FP6) ∩0 ((N9 →3 Na)→2 FN4) (8)
where P = flat(λx.x > 0)

N = flat(λx.x < 0)
FP = flat(λf.f 1 > 0)
FN = flat(λf.f (−1) < 0)

Semantically, it is clear that

λf.f ∈ JCK+ = J(P → P)→ FPK+ ∩ J(N → N)→ FNK+.

But if we reduce the configuration

·, ((λf.f) @[C) (λx.x) 42

ignoring the compatibility side conditions on D-FUN and D-INTER

(and omitting rule DROP) then, after a few steps,5 we arrive at a
configuration that blames the subject wrongly:6

3J(9→a) : 7J(true) : 5J(7→8) : 1J(5→6) : . . .
2J(3→4) : 0J(1 ∩ 2) : [J(0) : ·

. . .@6 check((((λx.x) (1 @9 N)) @a N) @8 P > 0) . . .
(9)

Blame is triggered by the next step that reduces (1 @9 N) to 1 and
adds the constraint 9J(false). It is caused by the evaluation of a flat
contract FP on an argument that is wrapped in the function contracts
P → P and N → N . The problem is that the contract N → N
does not belong to the same operand of the intersection as FP and
thus N → N must not be enforced in the body of FP.

We can determine this mismatch by recognizing that the su-
perscript of . . . @6 check(. . .), belongs to the left component of
0J(1 ∩ 2) whereas the superscript of 1 @9 N belongs to the right
component. We avoid such mismatches altogether by ignoring de-
layed contracts that originate from a different compartment of an en-
closing union or intersection contract. Thus, the D-FUN and D-INTER

rules must verify that all enclosing check(. . .) expressions in the
evaluation context are compatible with the contract. The companion
rule DROP drops incompatible delayed contracts.

To define compatibility, we first identify the contract component
to which a blame variable belongs. To do so we compute the
unique path from a source-level blame label to the blame variable
in the dependency graph of a constraint list (a forest by Lemma 9).
Each step of a path is drawn from the set Step = {→,∩,∪, ↓} ×
{1, 2}× LιM and denote the left/right (1/2) subcontract of a function,
intersection, or union contract along with the constraint variable at
that position. The symbol ↓ stands for an indirection constraint and
its single subcontract is always at position 1.

5 The full reduction sequence may be inspected in the supplement.
6 Blame variables are chosen to match the superscripts in Equation (8).

383

BETA ς, E[(λx.M)V] −→ ς, E[M [x 7→ V]]

D-CON-OP ς, E[O(~U(V @b Q) ~W)] −→ ς, E[O(~UV ~W)] U ::= K | λx.M
OP ς, E[O(~V)] −→ ς, E[δO(~V)] V ::= K | λx.M,

~V ∈ dom(δO)
ACTIVATE ς, E[V @[C] −→ [J(ι) : ς, E[V @ι C] ι 6∈ ς
LEFT ς, E[V @ι (K[I] ∩D)] −→ ιJ(ι1 ∩ ι2) : ς, E[(V @ι1 I) @ι2 K[D]] ι1, ι2 6∈ ς
RIGHT ς, E[V @ι (Q ∩ K[I])] −→ ιJ(ι1 ∩ ι2) : ς, E[(V @ι1 I) @ι2 K[Q]] ι1, ι2 6∈ ς
D-UNION ς, E[V @ι (K[C ∪D])] −→ ιJ(ι1 ∪ ι2) : ς, E[(V @ι1 K[C]) @ι2 K[D]] ι1, ι2 6∈ ς

I-FLAT ς, E[V @ι flat(M)] −→ ς, E[V @ι check(M V)]
I-UNIT ς, E[V @ι check(W)] −→ ιJ(W) : ς, E[V]

D-FUN ς, E[(V @ι (C→D))W] −→ ιJ(ι1→ ι2) : ς, E[(V (W @ι1 C) @ι2 D] ι1, ι2 6∈ ς, compς(E, ι)
D-INTER ς, E[(V @ι (Q ∩R))W] −→ ιJ(ι1 ∩ ι2) : ς, E[((V @ι1 Q) @ι2 R)W] ι1, ι2 6∈ ς, compς(E, ι)
DROP ς, E[(V @ι Q)W] −→ ς, E[V W] ¬compς(E, ι)

Figure 12. Operational semantics of λCon
V d; reductions in gray are identical to λCon

V reductions

comp(ε, ρ) comp(π, ε)
ι1 6= ι2

comp((↓, 1, ι1).π, (↓, 1, ι2).ρ)

ι1 6= ι2 i1, i2 ∈ {1, 2}
comp((→, i1, ι1).π, (→, i2, ι2).ρ)

comp(π, ρ)
comp((♦, i, ι).π, (♦, i, ι).ρ)

Figure 13. Compatibility of paths

Definition 3. Define Path(ς, b) ⊆ Step+ by induction on the length
of the unique path in DG(ς) from b to a root [.

Path(ς, b) =


(↓, 1, [) b = [

Path(ς, b0).(↓, 1, ι) b0J(ι) ∈ ς, b = ι

Path(ς, b0).(♦, i, b) b0J(ι1♦ι2) ∈ ς, b = ιi,

i ∈ {1, 2},♦ ∈ {→,∩,∪, ↓}

Let ς∗ be the final state of the reduction sequence in (9) and
consider the paths that belong to the blame variables 6 on the check()
and 9 on the flat contract that triggers the failure.

Path(ς∗, 6) = (↓, 1, [).(↓, 1, 0).(∩, 1, 1).(→, 2, 6)
Path(ς∗, 9) = (↓, 1, [).(↓, 1, 0).(∩, 2, 2).(→, 1, 3).(→, 1, 9)

The paths clearly indicate that the two blame variables belong to
different operands of the same intersection and thus are incompatible.
It remains to formally define compatibility.

Definition 4. Two paths π, ρ ∈ Step∗ are compatible if comp(π, ρ)
is derivable from the set of inductive rules in Figure 13.

Two blame identifiers are compatible with respect to a constraint
list ς if the corresponding paths are compatible:

compς(b1, b2) = comp(Path(ς, b1),Path(ς, b2)).

An evaluation context is compatible with a blame identifier,
compς(E, b), if b is compatible with all blame identifiers of the
check expressions traversed inE as defined by the rules in Figure 14.

Two paths are compatible if one is a prefix of the other or if they
have a common prefix and then proceed with different indirections
or with different subcontracts of a function contract. The rationale
is that different indirections are created for different instantiations
of the same contract: different instantiations are independent of one

compς(�, b)
compς(E, b)

compς(O(~V E ~M), b)

compς(E, b)
compς(EM, b)

compς(E, b)
compς(V E, b)

compς(E, b)

compς(E @b0 C, b)

compς(E, b) compς(b, b0)

compς(V @b0 check(E), b)

Figure 14. Compatibility with an evaluation context

another so that these instantiations may interact arbitrarily. Similarly,
the domain and the range part of a function contract are independent
and their (sub-) contracts may interact arbitrarily.

Compatibility with an evaluation context must consider all
pending contract checks because compatibility is not transitive.

Proposition 11. Compatibility of blame identifiers is reflexive and
symmetric, but not transitive.

5.2 Simulation
The nondeterministic semantics of λCon

V and the deterministic se-
mantics of λCon

V d are related by a simulation relation. Whenever the
deterministic semantics makes a step, then this evaluation step can
be simulated in the nondeterministic semantics in zero or more steps.
For lack of space, we defer the technical details of the simulation
relation ς `M �B M ′ to the supplement. The relation is indexed
by a constraint list ς and a set B of blame variables that indicate the
path to the current compartment. An expression is value-inactive if
no value subexpression contains a split expression. To distinguish
the reduction relations, we prime all deterministic reductions.

Theorem 3. Suppose that M is a value-inactive, closed expression,
ς ` M �∅ M ′, and ς,M ′ −→′ ς ′, N ′. Then there exist N and ς ′

such that ς ′ ` N �∅ N ′ and ς,M −→∗ ς ′, N .

6. Technical Results
In the literature, contract soundness typically states that applying a
contract to an expression forces this expression to behave according
to the contract. We augment this theorem with a dual context part
that states that contexts ending in contract monitoring respect the
contract that is monitored.

384

Theorem 4 (Contract soundness for expressions).

M @[C ∈ JCK+.

Theorem 5 (Contract soundness for contexts).

L[�@[C] ∈ JCK−.

However, such a soundness statement can be satisfied by a trivial
interpretation of contract assertion that does not terminate or that
throws some exception. Hence, we set out to prove a stronger result.
If we assert a contract to an expression that is known to satisfy the
contract, then no context should be able to elicit blame.

We need some notation to state this result. We write BLab(X)
for the set of blame labels occurring in syntactic phrases X like
expressions, contracts, and contexts. We write dom(ς) for the set
of blame identifiers that occur on the left side of a constraint in ς:
dom(ς) = {b | bJ(. . .) ∈ ς}. This set is the largest set of blame
identifiers b that may be defined in the least solution LSol(ς). That is,
for x ∈ {subject, context}, if LSol(ς)(b, x) w f, then b ∈ dom(ς).

Theorem 6 (Subject blame soundness). Suppose that M ∈ JCK+.
For all ς , E with b /∈ dom(ς) ∪ BLab(M,C,E), ς ′, and N such
that ς, E[M @b C] 7−→∗ ς ′, N , it holds Jς ′K(b, subject) v t.

Theorem 7 (Context blame soundness). Suppose that L ∈ JCK−.
For all ς , M with b /∈ dom(ς) ∪ BLab(M,C,E), ς ′, and N such
that ς,L[M @b C] 7−→∗ ς ′, N , it holds Jς ′K(b, context) v t.

We are interested in the contraposition of these two theorems: If
reduction reaches a blame state for a subject, then there is a value
violating the corresponding contract; and dually, if reduction reaches
a blame state for a context, then there is indeed a context violating
its contract.

In the companion technical report [21] we show that λCon
V is a

conservative extension of the original blame calculus [13]. If we
restrict the contract language of λCon

V to flat contracts and function
contracts, then we can map programs in this restricted language to
Findler and Felleisen’s calculus and establish a bisimulation between
executions in the two calculi. The actual statement of the theorem is
somewhat technical.

7. Related Work
Higher-Order Contracts Software contracts evolved from Floyd
and Hoare’s work on using pre- and postconditions for program spec-
ification and verification [15, 19]. Meyer’s Design by ContractTM

methodology [22] stipulates the specification of contracts for all
components of a program and introduces the idea of monitoring
these contracts while the program is running.

Findler and Felleisen [13] were the first to construct contracts
and contract monitors for higher-order functional languages. Their
work has attracted a plethora of follow-up works that range from
deliberations on blame assignment [8, 31] to extensions in various
directions: contracts for polymorphic types [1, 17], for affine types
[30], and for temporal conditions [9].

Semantics of Contracts Blume and McAllester [4] construct a
semantics of contracts and show that it is sound and complete with
respect to Findler-Felleisen style contract monitoring. Their defini-
tion of the set of expressions that satisfy a contract is superficially
similar to ours, but there are some subtle differences that lead to
considerable technical complexity in their work. The key difference
is that their semantics does not have a counterpart to our notion
of a context respecting a contract. This omission forces them to
introduce a notion of safe expressions to exclude expressions that
do not respect their context. They do consider dependent function
contracts, the study of which we defer to future work.

Findler and Blume [11] model the semantics of higher-order,
non-dependent contracts using pairs of error projections. The seman-
tics is shown sound with respect to the Blume-McAllester model
and completeness holds for non-empty contracts. Unfortunately, a
projection-based semantics cannot be extended to dependent func-
tion contracts [12].

Dimoulas and Felleisen [7] investigate different styles of contract
monitoring, ranging from tight monitoring to shy monitoring. Their
base language is CPCF, a simply typed lambda calculus with higher-
order (dependent) contracts and monitoring. Instead of providing a
denotational semantics of contracts (as we do), they base their work
on contextual equivalence and contextual simulation. While a set
of contract-abiding terms could be derived from their definitions,
the thus defined semantics would be defined in terms of monitoring,
whereas our semantics is defined without recourse to monitoring.
On the other hand, this choice enables the authors to relate different
styles of contract monitoring and to clarify blame assignment by
splitting contracts in a server (subject) and client (context) part,
which compose back to the original contract. They do not investigate
further operators on contracts.

Combinations of Contracts Racket’s contract system [14, Chapter
8.1] supports the operators and/c and or/c on contracts. They
are designed to extend their obvious action on flat contracts as
conjunction and disjunction in a practically useful way to higher-
order contracts. However, they are significantly different from
intersection and union, so our proposal may be a useful complement.

The contract (and/c C . . .) “. . . tests any value by apply-
ing the contracts in order, from left to right.” Thus, a contract like
(and/c (-> number? number?) (-> string? string?)) al-
ways raises context blame because no argument can be a number
and a string at the same time. In contrast, the intersection contract
(Num → Num) ∩ (Str → Str) enables a context to choose
between a number and a string argument.

The documentation of (or/c C . . .) is quite involved with
many operational details. Essentially, the flat contracts among C . . .
are checked in order. If one of them succeeds, then the disjunction
succeeds. Otherwise, the first-order parts of the remaining contracts
are checked in order. The disjunction fails unless exactly one
contract remains: in that case, the checked value is wrapped in
the remaining contract.

Compared to intersection or union, or/c does not handle arbi-
trary combinations of flat and function contracts. It is not possible
to construct the or/c of two function contracts of the same arity
because such functions cannot be told apart by a first-order check.

Racket’s case-> operator [14, Chapter 8.2] essentially provides
an arity-indexed function contract. Hence, the arity of each sub-
contract must be different and, when asserted, a first-order arity
check suffices to select one of the sub-contracts. Then the function
gets wrapped as usual. This functionality is very specific to Racket
and it is not clear whether it could be modeled with intersection
and/or union.

In summary, Racket’s contract system supports operators in-
spired by disjunction and conjunction. Their specification is opera-
tional and their properties are designed to fit the needs of a practical
programmer. In contrast, our proposal for intersection and union con-
tracts has a denotational specification grounded in type theory and
our operators inherit the properties of the type-theoretic constructs.

The rewriting-based approach to check higher-order contracts
symbolically [29] also supports contract operators in the spirit or
and/c and or/c. This approach is designed to fit in with Racket’s
contract implementation and has similar restrictions.

385

8. Conclusion
Our calculus of blame assignment for higher-oder contracts with
intersection and union contracts has a number of novel aspects. First,
the specification for intersection and union contracts is strongly
inspired by their type-theoretic counterparts. This connection tightly
integrates statically and dynamically typed worlds which may be
beneficial for future integration in a gradual type system.

Second, our development is based on a novel denotational
semantics of contracts. It distinguishes a set of terms, subjects,
that satisfy a contract and a set of contexts that respect the contract.
Our monitoring soundness result proves that terms from the former
set can never lead to subject (positive) blame whereas contexts from
the latter set can never lead to context (negative) blame.

Acknowledgments
This work benefited from discussion with participants of the
Dagstuhl Seminar “Scripting Languages and Frameworks: Analysis
and Verification” in 2014: Christos Dimoulas, Matthias Felleisen,
Cormac Flanagan, Fritz Henglein, and Sam Tobin-Hochstadt. In
particular, Christos provided a flood of examples and untiring en-
thusiasm to discuss the semantics of contracts. Thanks are also
due to Robby Findler, Phil Wadler, and the anonymous PLDI 2015
reviewers for their thoughtful remarks and (counter-) examples.

References
[1] A. Ahmed, R. B. Findler, J. G. Siek, and P. Wadler. Blame for all. In

T. Ball and M. Sagiv, editors, Proc. 38th ACM Symp. POPL, pages
201–214, Austin, TX, USA, Jan. 2011. ACM Press.

[2] F. Barbanera and M. Dezani-Ciancaglini. Intersection and union types.
In T. Ito and A. Meyer, editors, Proc. Theoretical Aspects of Computer
Software, volume 526 of LNCS, Sendai, Japan, 1991. Springer.

[3] F. Barbanera, M. Dezani-Ciancaglini, and U. de’ Liguoro. Intersection
and union types: Syntax and semantics. Information and Computation,
119(2):202–230, 1995.

[4] M. Blume and D. McAllester. Sound and complete models of contracts.
J. Funct. Program., 16:375–414, July 2006.

[5] M. Coppo and M. Dezani-Ciancaglini. A new type-assignment for
λ-terms. Archiv. Math. Logik, 19(139-156), 1978.

[6] R. Davies and F. Pfenning. Intersection types and computational
effects. In P. Wadler, editor, Proc. ICFP 2000, pages 198–208, Montreal,
Canada, Sept. 2000. ACM Press, New York.

[7] C. Dimoulas and M. Felleisen. On contract satisfaction in a higher-order
world. ACM TOPLAS, 33(5):16, 2011.

[8] C. Dimoulas, R. B. Findler, C. Flanagan, and M. Felleisen. Correct
blame for contracts: No more scapegoating. In T. Ball and M. Sagiv,
editors, Proc. 38th ACM Symp. POPL, pages 215–226, Austin, TX,
USA, Jan. 2011. ACM Press.

[9] T. Disney, C. Flanagan, and J. McCarthy. Temporal higher-order
contracts. In O. Danvy, editor, Proc. ICFP 2011, pages 176–188,
Tokyo, Japan, Sept. 2011. ACM Press, New York.

[10] J. Dunfield and F. Pfenning. Type assignment for intersections and
unions in call-by-value languages. In A. D. Gordon, editor, FOSSACS
2003, volume 2620 of LNCS, pages 250–266. Springer, 2003.

[11] R. B. Findler and M. Blume. Contracts as pairs of projections. In
P. Wadler and M. Hagiya, editors, Proceedings of the 8th International

Symposium on Functional and Logic Programming FLOPS 2006, pages
226–241, Fuji Susono, Japan, Apr. 2006. Springer.

[12] R. B. Findler, M. Blume, and M. Felleisen. An investigation of contracts
as projections. Technical Report TR-2004-02, University of Chicago,
Computer Science Department, 2004.

[13] R. B. Findler and M. Felleisen. Contracts for higher-order functions.
In S. Peyton-Jones, editor, Proc. ICFP 2002, pages 48–59, Pittsburgh,
PA, USA, Oct. 2002. ACM Press, New York.

[14] M. Flatt and PLT. The Racket Reference, v.6.1.1 edition, 2015.
http://docs.racket-lang.org/reference/index.html.

[15] R. Floyd. Assigning meanings to programs. In Proceedings of Symposia
in Applied Mathematics, pages 19–32, 1967.

[16] M. Furr, J. An, J. S. Foster, and M. W. Hicks. Static type inference for
Ruby. In S. Y. Shin and S. Ossowski, editors, SAC, pages 1859–1866,
Honolulu, Hawaii, USA, Mar. 2009. ACM.

[17] A. Guha, J. Matthews, R. B. Findler, and S. Krishnamurthi.
Relationally-parametric polymorphic contracts. In P. Costanza and
R. Hirschfeld, editors, DLS, pages 29–40. ACM, 2007.

[18] R. Hinze, J. Jeuring, and A. Löh. Typed contracts for functional
programming. In P. Wadler and M. Hagiya, editors, Proceedings of the
8th International Symposium on Functional and Logic Programming
FLOPS 2006, pages 208–225, Fuji Susono, Japan, Apr. 2006. Springer.

[19] C. A. R. Hoare. An axiomatic basis for computer programming. Comm.
ACM, 12:576–580, 1969.

[20] H. Hosoya, J. Vouillon, and B. C. Pierce. Regular expression types for
XML. ACM TOPLAS, 27(1), 2004.

[21] M. Keil and P. Thiemann. Blame assignment for higher-order contracts
with intersection and union. Technical report, Institute for Computer
Science, University of Freiburg, 2015.

[22] B. Meyer. Object-Oriented Software Construction. Prentice-Hall, 1988.
[23] B. Meyer. Object-Oriented Software Construction. Prentice-Hall,

Upper Saddle River, NJ, USA, 2nd edition, 1997.
[24] B. Pierce. Programming with intersection types, union types, and

polymorphism. Technical Report CMU-CS-91-106, Carnegie Mellon
University, Feb. 1991.

[25] B. C. Pierce. Programming with Intersection Types and Bounded
Polymorphism. PhD thesis, Carnegie Mellon University, Dec. 1991.

[26] J. G. Siek and W. Taha. Gradual typing for functional languages. In
Scheme and Functional Programming Workshop, Sept. 2006.

[27] S. Tobin-Hochstadt and M. Felleisen. Interlanguage migration: From
scripts to programs. In Dynamic Languages Symposium, DLS 2006,
pages 964–974, Portland, Oregon, USA, 2006. ACM.

[28] S. Tobin-Hochstadt and M. Felleisen. The design and implementation
of typed scheme. In P. Wadler, editor, Proc. 35th ACM Symp. POPL,
pages 395–406, San Francisco, CA, USA, Jan. 2008. ACM Press.

[29] S. Tobin-Hochstadt and D. Van Horn. Higher-order symbolic execution
via contracts. In G. T. Leavens and M. B. Dwyer, editors, OOPSLA,
pages 537–554. ACM, 2012.

[30] J. A. Tov and R. Pucella. Stateful contracts for affine types. In A. D.
Gordon, editor, ESOP 2010, volume 6012 of LNCS, pages 550–569.
Springer, 2010.

[31] P. Wadler and R. B. Findler. Well-typed programs can’t be blamed. In
Proc. 18th ESOP, volume 5502 of LNCS, pages 1–16, York, UK, Mar.
2009. Springer.

[32] A. K. Wright and R. Cartwright. A practical soft type system for
Scheme. ACM TOPLAS, 19(1):87–152, Jan. 1997.

386

