
On Contracts and Sandboxes for JavaScript

Matthias Keil and Peter Thiemann

University of Freiburg, Freiburg, Germany
{keilr,thiemann}@informatik.uni-freiburg.de

Abstract. JavaScript is the language of the web. It is used by more
than 89% of all the websites. Most of them rely on third-party libraries
for connecting to social networks, feature extensions, or advertisement.
Some of these libraries are packaged with the application, but others are
loaded at run time from origins of different trustworthiness, sometimes
depending on user input. Thus, managing untrusted JavaScript code has
become one of the key challenges of present research on JavaScript.
This work is about TreatJS and the TreatJS-Sandbox .
TreatJS is a language embedded, higher-order contract system for JavaScript
which enforces contracts by run-time monitoring. Beyond providing the
standard abstractions for building higher-order contracts (base, function,
and object contracts), TreatJS ’s novel contributions are its guarantee of
a non-interfering contract execution, its systematic approach to blame
assignment, its support for contracts in the style of union and inter-
section types, and its notion of a parameterized contract scope, which
is the building block for composable run-time generated contracts that
generalize dependent function contracts.
The TreatJS-Sandbox is a language-embedded sandbox for full JavaScript.
It enables scripts to run in a configurable degree of isolation with fine-
grained access control. It provides a transactional scope in which effects
are logged for review by the access control policy. After inspection of the
log, effects can be committed to the application state or rolled back.

1 Introduction

We present the design and implementation of TreatJS , a language embedded,
higher-order contract system for JavaScript which enforces contracts by run-time
monitoring. TreatJS supports most features of existing systems and a range of
novel features that have not been implemented in this combination before. No
source code transformation or change in the JavaScript run-time system is re-
quired. In particular, TreatJS is the first contract system for JavaScript that
supports the standard features of contemporary contract systems (embedded
contract language, JavaScript in flat contracts, contracts as projections, full in-
terposition using JavaScript proxies) in combination with the following three
novel points.

1. Noninterference. Contracts are guaranteed not to exert side effects on a
contract abiding program execution. A predicate is an arbitrary JavaScript



2 Keil, Thiemann

function, which can access the state of the application program but which
cannot change it. An exception thrown by a predicate is not visible to the
application program.

2. Dynamic contract construction. Contracts can be constructed and composed
at run time using contract abstractions without compromising noninterfer-
ence. A contract abstraction may contain arbitrary JavaScript code; it may
read from global state and it may maintain encapsulated local state. The lat-
ter feature can be used to construct recursive contracts lazily or to remember
values from the prestate of a function for checking the postcondition.

3. New contract operators. Beyond the standard contract constructors (flat,
function, pairs), TreatJS supports object, intersection, and union contracts.
Furthermore, contracts can be combined arbitrarily with the boolean con-
nectives: conjunction, disjunction, and negation.

2 TreatJS by Example

TreatJS is implemented as a library so that all aspects of a contract can be speci-
fied using the full JavaScript language. The library relies on JavaScript proxies to
guarantee full interposition for contracts. It further exploits JavaScript’s reflec-
tive features to run contracts in a sandbox environment, which guarantees that
the execution of contract code does not modify the application state. No source
code transformation or change in the JavaScript run-time system is required.

In TreatJS , contracts are first-class values that can be stored or further com-
posed. They are dormant until they are asserted to a value.

We start out with explaining TreatJS ’s notation for base contracts and func-
tion contracts, and then move on to discuss intersection and union contracts.
The implementation of the system is available on the Web. 1.

2.1 Base Contracts

The base contract is the fundamental building block for all other contracts.
It is defined by a predicate, that is, a function returning a boolean value. In
JavaScript, any function can be used as a predicate, because any return value
can be converted to boolean. For example, the function typeOfNumber can serve
as a predicate that checks whether its argument is a number.

1 function typeOfNumber (arg) {
2 return (typeof arg) === ’number’;
3 };

To create a base contract from such a predicate, we apply the appropriate
contract constructor to it.

4 var Num = Contract.Base (typeOfNumber);

1 http://proglang.informatik.uni-freiburg.de/treatjs/



On Contracts and Sandboxes for JavaScript 3

Here, Contract is the object that encapsulates the TreatJS implementation.
Its assert method attaches a contract to a subject. Attaching a base contract
applies the predicate to the value. If the result is true, assert returns the original
value. Otherwise, assert signals a contract violation which blames the subject.
The following example demonstrates both outcomes.

5 Contract.assert (1, Num); // accepted, returns 1
6 Contract.assert (’a’, Num); // violation, blame subject ’a’

Figure 2.1 defines a number of base contracts for later use. Analogous to
Num, the contracts Bool and Str check the type of their argument. Contract
Any is a contract that accepts any value.

7 var Bool = Contract.Base (function (arg) {
8 return (typeof arg) === ’boolean’;
9 });

10 var Str = Contract.Base (function (arg) {
11 return (typeof arg) === ’string’;
12 });
13 var Any = Contract.Base (function (arg) {
14 return true;
15 });

Fig. 1. Some utility contracts.

2.2 Function Contracts

While a base contract can specify finitary properties of a function f (like f(1) =
0), a function contract is needed to specify that a function uniformly maps num-
bers to booleans. A function contract is built from one or more contracts, zero or
more for the arguments and one for the result of the function. Asserting a func-
tion contract to a non-function value immediately signals a contract violation.
Asserting it to a function creates a wrapper function that asserts the argument
contracts to the arguments of each call of the function and the result contract
to the return value of each call.

As a running example, we consider the function plus, which applies the plus
operator + to its arguments and returns the result.

16 function plus(x, y) {
17 return (x + y);
18 }

The function contract PlusNum restricts a function’s argument to a number
and asserts that the result is a number.



4 Keil, Thiemann

19 var PlusNum = Contract.AFunction ([Num,Num], Num);
20 var plusNum = Contract.assert (plus, PlusNum);

In general, a JavaScript function has no fixed arity and arguments are passed
to a function in a special array like object. Thus, a standard function contract
takes two arguments. The first argument is an object contract that maps an
argument to a contract. The second argument is a contract for the function’s
return.

Contract.AFunction is the constructor for a simple function contract that
takes an array of contracts for the arguments and a contract for the result of a
function call as arguments.

The contracted function accepts any argument that satisfies the Num con-
tract. If there is an argument that violates its contract, then the function contract
raises an exception that blames the context, which is in this case the caller of the
function that provides the wrong kind of argument. If the argument is ok, but
the result contract fails, then blame is assigned to the subject (i.e., the function).
Here are some examples that exercise plusNum as well as a broken version of it
that returns a string.

21 plusNum (1, 2); // accepted, returns true
22 plusNum (’a’, ’b’); // violation, blame context ’a’

23 function plusBroken (x) {
24 return (’’ + (x + y));
25 };
26 var plusNum2 = Contract.assert (plusBroken, PlusNum);
27 plusNum2 (1, 2); // violation, blame subject (function)

Higher-order contracts are also possible: the argument and result contracts
may themselves be function contracts and so on, recursively. As an example, a
function that takes a number and a numeric plus function as arguments and
returns a number may be specified by the following contract.

28 var Add1Num =
29 Contract.AFunction ([Num, PlusNum], Num);

30 function add1Broken (x, plus) {
31 return plus(x, ’1’);
32 }
33 var add1BrokenNum = Contract.assert(add1Broken, Add1Num);

Higher-order contracts open up new ways for a function not to fulfill its
contract. For example, the function add1Broken violates the contract Add1Num:
the call add1BrokenNum (1, plus) signals a violation that blames the subject
(the function) because it supplies the wrong kind of argument to its parameter
plus.

Dually, a function that returns a function may be compromised. Consider
the function getAdd1 that fulfills the contract GetAdd1:



On Contracts and Sandboxes for JavaScript 5

34 function getAdd1 (plus) {
35 return function add1 (x) {
36 return plus(x, 1);
37 }
38 }
39 var GetAdd1 = Contract.AFunction ([PlusNum],
40 Contract.AFunction ([Num], Num));
41 var add1Num = Contract.assert (getAdd1, GetAdd1) (plus);

42 add1Num (5); // accepted
43 add1Num (’a’); // violation, blame context ’a’

This example demonstrates that a function call that receives a suitable argu-
ment and returns a contract abiding result can still lead to a contract violation
if the result is misused.

2.3 Intersection and Union Contracts

In the previous section, the function plus was contracted with PlusNum to restrict
the arguments to numbers. Indeed, plus fulfills this contract so that we might
say it has type Num,Num → Num. However, the plus operator of JavaScript is
overloaded and does not restrict its arguments to numbers: it works just as well
if one argument is a string. Thus, plus also has type Str ,Str → Str .

TreatJS provides a corresponding constructor for intersection contracts.

44 var PlusStr = Contract.AFunction ([Str,Str], Str);
45 var PlusNumStr = Contract.Intersection (PlusNum, PlusStr);
46 var plusNumStr = Contract.assert (plus, PlusNumStr);

The function plusNumStr may be applied to number or string values and
promises to return a either a number or a string, depending on its arguments.
The context is blamed if it provides the function with an argument that does
not fulfill the expectations. The subject is blamed if the function does not fulfill
both constituent contracts.

Generally, the subject f of an intersection contract C ∩D must fulfill both
contracts C and D. If C = C1 → C2 and D = D1 → D2 are both function
contracts, then any argument to f has to fulfill C1∪D1. Additionally, the context
must be prepared to handle a value satisfying C2 ∪ D2. In case the argument
contracts overlap (i.e., C1 ∩D1 6= ∅), then applying the function to an element
in their intersection must yield a result that satisfies both, C2 and D2. As an
example for the case where C1 ∩D1 6= ∅, consider

47 var StrAny = Contract.AFunction ([Str,Any], Str)
48 var AnyStr = Contract.AFunction ([Any,Str], Str)
49 var PlusAny = Contract.Intersection (StrAny, AnyStr);

which is another valid typing for the plus function.



6 Keil, Thiemann

Just like intersections, union contracts are also applicable to functions. They
also mimick union types as closely as possible. That is, a function satisfies a
union of two function contracts if it satsifies either of them.

50 var TestPlus = Contract.Union(
51 Contract.AFunction([PlusNum], Num),
52 Contract.AFunction([PlusStr], Str));

A function which satisfied such a contract is either a function that accepts
a plus function which satisfies PlusNum and returns a number or by one that
accepts a plus function that satisfies PlusStr and returns a string value. As an
example consider the testPlus function.

53 function testPlus (plus) {
54 return plus(1, 2);
55 }
56 var testPlusNumStr = Contract.assert(testPlus, TestPlus);

Because the context do not know which kind or arguments testPlus supplies
to its plus argument, he has to call testPlus with a plus function that satisfiers
the intersection between PlusNum and PlusStr.

2.4 Dependent Contracts

A dependent contract is a contract on functions where the range portion depends
on the function argument. The contract for the function’s range can be created
with a contract abstraction, a contract that returns a contract. This abstration
is invoked with the caller’s argument. so that the returned contract may refer to
those values.

TreatJS ’s dependent contract operation only builds a range contract in this
way; it does not check the domain as checking the domain may be achieved with
a conjunction with another function contract.

For example, a dependent contract may be used to specify that the arguments
type of function add1 corresponds to the type of the functions return.

57 var SameType = Contract.SDependent(function(input) {
58 return Contract.Base(output) {
59 return (typeof input) === (typeof output).
60 }
61 });

The contract receives the input arguments and returns a contract for the
range that checks that the type of the input is identical to the type of the result.
When calling a function contracted with the dependent contract SameType, the
abstraction is invoked on the arguments and the resulting contract is imposed
on the return value.



On Contracts and Sandboxes for JavaScript 7

3 Sandboxing of Predicates

TreatJS is implemented as a library so that all aspects of a contract can be
specified using the full JavaScript language. For example, the base contract Num
checks its argument to be a number.

62 var Num = Contract.Base(function (arg) { {
63 return (typeof arg) === ’number’;
64 });

Asserting a base contracts to a value causes the predicate to be checked by
applying the predicate to the value.

65 Contract.assert(1, Num); // accepted

However, predicates are attempted not to influence the program state in any
way. A monitored program execution should either throw a contract violation or
evaluate to the same result as without contracts.

TreatJS relies on the sandbox presented in this work to guarantee that the
execution of contract code does not interfere with the contract abiding execution
of the host program.

To illustrate, we use a modified Num contract.

66 var NumBroken = Contract.Base(function(arg) {
67 type = (typeof arg);
68 return type === ’number’;
69 });

When asserting NumBroken, sandboxing intercepts the unintended write to the
global variable type in the following code and throws an exception.

As read-only access to objects and functions is safe and useful in many con-
tracts, TreatJS facilitates making external references visible inside of the sand-
box. For example, the Ary contract below references the global object Array.

70 var Ary = Contract.With(
71 {Array:Array},
72 Contract.Base(function (arg) {
73 return (arg instanceof Array);
74 }));

4 Transaction-based Sandboxing: A Primer

Today’s state of the art in securing JavaScript application that include code from
different origins is an all-or-nothing choice. Browsers apply protection mecha-
nisms, such as the same-origin policy or the signed script policy, so that scripts
either run in isolation or gain full access.

While script isolation guarantees noninterference with the function of the
application as well as preservation of data integrity and confidentiality, there



8 Keil, Thiemann

are scripts that must have access to part of the application state to function
meaningfully. As all included scripts run with the same authority, the application
script cannot exert fine-grained control over the use of data by an included script.

Transactional sandboxing is inspired by the idea of transaction processing in
database systems and transactional memory. Each sandbox implements a trans-
actional scope the content of which can be examined, committed, or rolled back.
Its design is inspired by revocable references and SpiderMonkey’s compartment
concept. Our sandbox provides the following novel features:

1. Language embedded. The sandbox is implemented as a library in JavaScript.
It handles the full JavaScript language (ES5) including its dynamic features.
No source code transformation or change in the JavaScript run-time system
is required.

2. Full interposition. Our sandbox adapts SpiderMonkey’s compartment con-
cept2 and runs code in isolation to the application.

3. Transaction-based sandboxing. The sandbox provides a transactional scope.
A proxy-based membrane makes objects accessible inside the sandbox, per-
forms effect logging, and enables locally visible modifications. After inspec-
tion of the log, effects can be committed to the application state or rolled
back.

The implementation of the system is available on the Web3.

4.1 Cross-Sandbox Access

We consider operations on binary trees as defined by Node in Figure 2 along
with some auxiliary functions. As an example, we perform operations on a tree
consisting of one node and two leaves. All value fields are initially 0.

19 var root = new Node(0, new Node(0), new Node(0));

Next, we create a new empty sandbox by calling the constructor Sandbox.
Its first parameter acts as the global object of the sandbox environment. It
is wrapped in a proxy to mediate all accesses and it is placed on top of the
scope chain for code executing inside the sandbox. The seconds parameter is a
configuration object. A sandbox is a first class value that can be used for several
executions.

20 var sbx = new Sandbox(this, {/∗ some parameters ∗/});

One use of a sandbox is to wrap invocations of function objects. To this end, the
sandbox API provides methods call, apply, and bind analogous to methods from
Function.prototype. For example, we may call setValue on root inside of sbx.

2 SpiderMonkey creates one heap for each website, initially introduced to optimize
garbage collection. All objects created by a website are only allowed to touch objects
in the same compartment. Proxies are used as cross compartment wrappers to make
objects accessible in other compartments.

3 https://github.com/keil/Sandbox



On Contracts and Sandboxes for JavaScript 9

1 function Node (value, left, right) {
2 this.value = value;
3 this.left = left;
4 this.right = right;
5 }
6 Node.prototype.toString = function () {
7 return (this.left?this.left + ”, ”:””) + this.value +(this.right?”, ”+this.right:””);
8 }
9 function heightOf (node) {

10 return Math.max(((node.left)?heightOf(node.left)+1:0), ((node.right)?heightOf(
node.right)+1:0));

11 }
12 function setValue (node) {
13 if (node) {
14 node.value=heightOf(node);
15 setValue(node.left);
16 setValue(node.right);
17 }
18 }

Fig. 2. Implementation of Node. Each node object consists of a value field, a left
node, and a right node. Its prototype provides a toString method that returns a string
representation. Function heightOf computes the height of a node and function setValue
replaces the value field of a node by its height, recursively.

21 sbx.call(setValue, this, root);

The first argument of call is a function object that is decompiled and redefined
inside the sandbox. This step erases the function’s free variable bindings and
builds a new closure relative to the sandbox’s global object. The second argu-
ment, the receiver object of the call, as well as the actual arguments of the call
are wrapped in proxies to make these objects accessible inside of the sandbox.

The wrapper proxies mediate access to their target objects outside the sand-
box. Reads are forwarded to the target unless there are local modifications. The
return values are wrapped in proxies, again. Writes produce a shadow value that
represents the sandbox-internal modification of an object. Initially, this modifi-
cation is only visible to reads inside the sandbox.

Native objects, like the Math object in line 10, are also wrapped in a proxy,
but their methods cannot be decompiled because there exists no string represen-
tation. Thus, native methods must either be trusted or forbidden. Fortunately,
most native methods to not have side effects, so we chose to trust them.

Given all the wrapping and sandboxing, the call in line 21 did not modify
the root object:

22 root.toString(); // returns 0, 0, 0

But calling toString inside the sandbox shows the effect.



10 Keil, Thiemann

23 sbx.call(root.toString, root); // return 0, 1, 0

4.2 Effect Monitoring

During execution, each sandbox records the effects on objects that cross the
sandbox membrane. The resulting lists of effect objects are accessible through sbx
.effects, sbx.readeffects, and sbx.writeeffects which contain all effects, read effects,
and write effects, respectively. All three lists offer query methods to select the
effects of a particular object.

24 sbx.call(heightOf, this, root);
25 var rects = sbx.effectsOf(this);
26 print(”;;; Effects of this”);
27 rects.foreach(function(i, e) {print(e)});

The code snippet above prints a list of all effects performed on this, the global ob-
ject, by executing the heightOf function on root. The output shows the resulting
accesses to heightOf and Math.

28 ;;; Effects of this
29 (1425301383541) has [name=heightOf]
30 (1425301383541) get [name=heightOf]
31 (1425301383543) has [name=Math]
32 (1425301383543) get [name=Math]
33 ...

The first column shows a timestamp, the second shows the name of the effect,
and the last column shows the name of the requested parameter. The list does
not contain write accesses to this. But there are write effects to value from the
previous invocation of setValue.

34 var wectso = sbx.writeeffectsOf(root);
35 print(”;;; Write Effects of root”);
36 wectso.foreach(function(i, e) {print(e)});

37 ;;; Write Effects of root
38 (1425301634992) set [name=value]

4.3 Inspecting a Sandbox

The state inside and outside of a sandbox may diverge for different reasons. We
distinguish changes, differences, and conflicts.

A change indicates if the sandbox-internal value has been changed with re-
spect to the outside value. A difference indicates if the outside value has been
modified after the sandbox has concluded. For example, a difference to the pre-
vious execution of setValue arises if we replace the left leaf element by a new
subtree of height 1 outside of the sandbox.



On Contracts and Sandboxes for JavaScript 11

39 root.left = new Node(new Node(0), new Node(0));

Changes and differences can be examined using an API that is very similar
to the effect API. There are flags to check whether a sandbox has changes or
differences as well as iterators over them.

A conflict arises in the comparison between different sandboxes. Two sandbox
environments are in conflict if at least one sandbox modifies a value that is
accessed by the other sandbox later on. We consider only Read-After-Write and
Write-After-Write conflicts.

To demonstrate conflicts, we define a function appendRight, which adds a
new subtree on the right.

40 function appendRight (node) {
41 node.right = Node(’a’, Node(’b’), Node(’c’));
42 }

To recapitulate, the global root is still unmodified and prints 0,0,0,0,0, whereas
the root in sbx prints 0,0,0,1,0. Now, let’s execute appendRight in a new sandbox
sbx2.

43 var sbx2 = new Sandbox(this, {/∗ some parameters ∗/});
44 sbx2.call(appendRight, this, root);

Calling toString in sbx2 prints 0,0,0,0,b,a,c. However, the sandboxes are not in
conflict, as the following command show.

45 sbx.inConflictWith(sbx2); // returns false

While both sandboxes manipulate root, they manipulate different fields. sbx re-
calculates the field value, whereas sbx2 replaces the field right. Neither reads data
that has previously been written by the other sandbox. However, this situation
changes if we call setValue again, which also modifies right.

46 sbx.call(setValue, this, root);
47 var cofts = sbx.conflictsWith(sbx2); // returns a list of conflicts
48 cofts.foreach(function(i, e) {print(e)});

It documents a read-after-write conflict:

1 Confict: (1425303937853) get [name=right]@SBX001 − (1425303937855) set [
name=right]@SBX002

4.4 Transaction Processing

The commit operation applies select effects from a sandbox to its target. Effects
may be committed one at a time by calling commit on each effect object or all
at once by calling commit on the sandbox object.

49 sbx.commit();
50 root.toString(); // returns 0, 1, 0, 2, 0



12 Keil, Thiemann

The rollback operation undoes an existing manipulation and returns to its previ-
ous configuration before the effect. Again, rollbacks can be done on a per-effect
basis or for the sandbox as a whole. However, a rollback did not remove the
shadow object. Thus, after rolling back, the values are still shadow values in sbx.

51 sbx.rollabck();
52 root.toString(); // returns 0, 1, 0, 2, 0
53 sbx.call(toString, this, root); // returns 0, 0, 0, 0, 0

The revert operation resets the shadow object of a wrapped value. The following
code snippet reverts the root object in sbx.

54 sbx.revertOf(root);

Now, root’s shadow object is removed and the origin is visible again in the
sandbox. Calling toString inside of sbx returns 0,1,0,2,0.

4.5 Transparent Sandboxing

Transparent sandboxing is a special mode of our sandbox. It deactivates the
shadowing of write operations so that modifications apply directly to the target
objects. As those modifications are performed inside the sandbox, write effects
are still logged, so that they can be inspected and rolled back as usual. It can
be enabled by changing the transparent flag in the sandbox configuration. Here
is an example:

55 var tsbx = new Sandbox(this, {transparent:true});
56 tsbx.call(setValue, this, root);

Calling toString demonstrates the difference to the standard, non-transparent
sandbox: All changes of line 56 are visible.

57 root.toString(); // returns 0, 1, 0, 2, 0

Calling tsbx.rollback(); resets all modifications of tsbx. Afterwards, root prints
0,0,0,2,0.

4.6 Pre-state Snapshot

The snapshot mode instructs the membrane to clone target objects at initializa-
tion time and to use the clone as shadow object. The snapshot enables to rebase
the sandbox to its initialization state.

A snapshot can be triggered by including the object in the third argument
of the sandbox constructor, the snapshot array.

58 var ssbx = new Sandbox(this, {/∗ some parameters ∗/}, [root]);

The sandbox can be used as before.

59 ssbx.call(setValue, this, root);
60 ssbx.call(root.toString, root); // returns 0, 1, 0, 2, 0



On Contracts and Sandboxes for JavaScript 13

Remember, the original root object prints 0,0,0,2,0. Now, let’s do some changes,
for example by calling setValue(root);.

Both representations prints 0,1,0,2,0. But if one would rebase the sandbox
to its initial state, by calling ssbx.rebase();, the values go back to the version
that exist at initialization time.

61 ssbx.call(root.toString, root); // returns 0, 0, 0, 2, 0

4.7 Wrapping

The methods call and apply are shortcuts. Internally, they call a wrap method to
redefine the function inside of the sandbox and apply the corresponding method
from Function.prototype to it. The following example shows an alternative to
the call in line 21.

62 sbx.wrap(setValue).call(this, root);

But wrap can also be used independently. One example is to obtained a sand-
boxed version of root.

63 var sbxroot = sbx.wrap(root);

The returned object is wrapped in the sandbox membrane and identical to the
object visible inside of the sandbox. Each read access on sbxroot returns another
sandbox object and each each write access causes an effect. All sandbox features
like commit, rollback, and effect logging remain active.

Calling toString on sbxroot returns 0,1,0,2,0. The method call illustrates that
sbxroot is the modified object that occurs in sbx. Nevertheless, sbxroot can be
used like any other object.

This feature allows us to extend an existing data structure with transactional
features. For example, instead of defining root directly, a developer could define
it as follow.

64 var sbx3 = new Sandbox(this, {/∗ some parameters ∗/});
65 var root = sbx3.wrap(new Node(0, new Node(0), new Node(0)));

Proxies guarantee that the new root object performs as usual, for example when
calling setValue(root). But it enables to use all sandbox features in addition, e.g.
to commit changes or to roll back.

5 Related Work

Contract Monitoring TreatJS [7] is a language embedded, dynamic, higher-order
contract system implemented in JavaScript. Its development is based on a novel
denotational semantics of contracts and on a blame calculus [6] that enables
higher-order contract with unrestricted intersection and union of contracts. The
specification for intersection and union contracts is strongly inspired by their
type-theoretic counterparts. This connection tightly integrates statically and
dynamically typed worlds which may be beneficial for future integration in a
gradual type system.



14 Keil, Thiemann

Effect Monitoring JSConTest [2] is a framework that helps to investigate the
effects of unfamiliar JavaScript code by monitoring the execution and by sum-
marizing the observed access traces to access permission contracts. It comes with
an algorithm [3] that infers a concise effect description from a set of access paths
and it enables the programmer to specify the effects of a function using access
permission contracts.

JSConTest2 [5] is a redesign and a reimplementation of JSConTest using
JavaScript proxies. The new implementation addresses shortcomings of the pre-
vious version. In particular, the proxy-based implementation guarantees full in-
terposition for the full language and for all code regardless of its origin, including
dynamically loaded code and code injected via eval.

JavaScript Proxies Object equality becomes an issue for non-interference when
the executed code ends up in a mixture between wrapper and target. The prob-
lem arises if an equality test between wrapper and target returns false instead
of true. The work of Keil et al. [4] examines this problem and presents a modifi-
cation of the underlying VM with respect to object equality and introduces new
transparent proxies that fit better to this use case.

6 Conclusion

We presented TreatJS , a language embedded, dynamic, higher-order contract
system for full JavaScript. TreatJS extends the standard abstractions for higher-
order contracts with intersection and union contracts, boolean combinations of
contracts, and parameterized contracts, which are the building blocks for con-
tracts that depend on run-time values. TreatJS implements proxy-based sand-
boxing for all code fragments in contracts to guarantee that contract evaluation
does not interfere with normal program execution. The only serious impediment
to full noninterference lies in JavaScript’s treatment of proxy equality, which
considers a proxy as an individual object.

The TreatJS-Sandbox runs JavaScript code in a configurable degree of isola-
tion with fine-grained access control. It provides a transactional scope in which
effects are logged for inspection. Effects can be committed to the application
state or rolled back.

Both systems are implemented as a JavaScript library. No source code trans-
formation or adaption in the JavaScript run-time system is required. All aspects
are accessible through a sandbox API.



On Contracts and Sandboxes for JavaScript 15

References

1. John Boyland, editor. ECOOP 2015 - Object-Oriented Programming - 29th Euro-
pean Conference, volume ?, Prague, Czech Repulic, July 2015. LIPICS.

2. Phillip Heidegger, Annette Bieniusa, and Peter Thiemann. Access permission con-
tracts for scripting languages. In John Field and Michael Hicks, editors, Proc. 39th
ACM Symp. POPL, pages 111–122, Philadelphia, USA, January 2012. ACM Press.

3. Phillip Heidegger and Peter Thiemann. A heuristic approach for computing effects.
In Judith Bishop and Antonio Vallecillo, editors, Proc. 49th TOOLS, volume 6705
of LNCS, pages 147–162, Zurich, Switzerland, June 2011. Springer.

4. Matthias Keil, Sankha Narayan Guria, Andreas Schlegel, Manuel Geffken, and Peter
Thiemann. Transparent object proxies in JavaScript. In Boyland [1], pages 149–173.

5. Matthias Keil and Peter Thiemann. Efficient dynamic access analysis using
JavaScript proxies. In Proceedings of the 9th Symposium on Dynamic Languages,
DLS ’13, pages 49–60, New York, NY, USA, 2013. ACM.

6. Matthias Keil and Peter Thiemann. Blame assignment for higher-order contracts
with intersection and union. In Proceedings of the 20th ACM SIGPLAN Inter-
national Conference on Functional Programming, ICFP 2015, pages 375–386, New
York, NY, USA, 2015. ACM.

7. Matthias Keil and Peter Thiemann. Treatjs: Higher-order contracts for javascripts.
In Boyland [1], pages 28–51.


