
Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 23

Transparent Object Proxies for JavaScript

Matthias Keil1, Omer Farooq1, Sankha Narayan Guria2, Andreas Schlegel1, Manuel

Geffken1, and Peter Thiemann1

Abstract:

This work appeared in the conference proceedings of the European Conference on Object-Oriented
Programming, ECOOP 2015.

One important question in the design of a proxy API is whether a proxy object should inherit the
identity of its target. Apparently proxies should have their own identity for security-related appli-
cations whereas other applications, in particular contract systems, require transparent proxies that
compare equal to their target objects.

In this work we examine the issue with transparency in various use cases for proxies, discuss different
approaches to obtain transparency, and propose two designs that require modest modifications in the
JavaScript engine and cannot be bypassed by the programmer.

The JavaScript Proxy API embodies a design decision that reveals the presence of proxies

in some important use cases. This decision concerns object equality. Proxies are opaque,

which means that each proxy has its own identity, different from all other (proxy or non-

proxy) objects.

Given opaque proxies, an equality test can be used to distinguish a proxy from its target as

demonstrated in the following example:

1 var target = { /∗ some object ∗/ };

2 var handler = { /∗ empty handler ∗/ };

3 var proxy = new Proxy (target, handler);

4 proxy===target; // evaluates to false

Even though target and proxy behave identically, they are not considered equal. Thus, in

a program that uses object equality, the introduction of a proxy along one execution path

may change the meaning of the program without even invoking an operation on the proxy

(which may behave differently from the same operation on the target).

Equality for opaque proxies works well under the assumption that proxies and their tar-

gets are never part of the same execution environment. But the assumption that proxies

never share their execution environment with their targets is not always appropriate. One

prominent use case is the implementation of a contract system.

Two examples for such systems are the contract framework of Racket [FFP14, Chapter 7]

and TreatJS for JavaScript [KT15]. Both systems implement contracts on objects with spe-

1 University of Freiburg, Freiburg, Germany, {keilr,schlegea,geffken,thiemann}@informatik.uni-freiburg.de
2 Indian Institute of Technology Jodhpur, Jodhpur, India, sankha@iitj.ac.in



24 Matthias Keil et al.

cific wrapper objects, Racket’s chaperones or impersonators [St12] and JavaScript proxies,

respectively. But this may chang the semantics of a program and thus it violates a ground

rule for monitoring: a monitor should never interfere with a program conforming to the

monitored property.

Our ECOOP paper [Ke15] shows that a significant number of object comparisons would

fail when mixing opaque proxies and their target objects, e.g. when gradually adding con-

tracts to a program. As neither the transparent nor the opaque implementation of proxies

is appropriate for all use cases, we propose an alternative designs for transparent proxies

that is better suited for use cases such as certain contract wrappers and access restricting

membranes.

We use object capabilities to create proxies in a particular realm and to create an equal-

ity function that only reveals proxies for that realm. A new realm constructor returns a

new transparency realm represented by an object that consists of a fresh constructor for

transparent proxies (named Constructor) and an equals function revealing proxies of that

realm.

5 var realm = TransparentProxy.createRealm();

6 var proxy == realm.Constructor(target, handler);

7 proxy===target; // true

8 realm.equals(proxy, target); // false

The proxy proxy is transparent with respect to equality unless someone uses the realm.

equals method. The realm.equals method is a capability that represents the right to reveal

proxies of that realm. In addition, the realm also contains a constructor for realm-aware

weak maps and weak sets.

References

[Bo15] Boyland, John Tang, ed. 29th European Conference on Object-Oriented Programming,
ECOOP 2015, July 5-10, 2015, Prague, Czech Republic, volume 37 of LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.

[FFP14] Flatt, Matthew; Findler, Robert Bruce; PLT: . The Racket Guide, v.6.0 edition, March
2014. http://docs.racket-lang.org/guide/index.html.

[Ke15] Keil, Matthias; Guria, Sankha Narayan; Schlegel, Andreas; Geffken, Manuel; Thiemann,
Peter: Transparent Object Proxies in JavaScript. In: (Boyland) [Bo15], pp. 149–173.

[KT15] Keil, Matthias; Thiemann, Peter: TreatJS: Higher-Order Contracts for JavaScripts. In:
(Boyland) [Bo15], pp. 28–51.

[St12] Strickland, T. Stephen; Tobin-Hochstadt, Sam; Findler, Robert Bruce; Flatt, Matthew:
Chaperones and impersonators: run-time support for reasonable interposition. In (Leavens,
Gary T.; Dwyer, Matthew B., eds): Proceedings of the 27th Annual ACM SIGPLAN Con-
ference on Object-Oriented Programming, Systems, Languages, and Applications, OOP-
SLA 2012, part of SPLASH 2012, Tucson, AZ, USA, October 21-25, 2012. ACM, pp.
943–962, 2012.


