
Transaction-based Sandboxing for JavaScript
Technical Report
Matthias Keil and Peter Thiemann

University of Freiburg
Freiburg, Germany
{keilr,thiemann}@informatik.uni-freiburg.de

Abstract
Today’s JavaScript applications are composed of scripts from different origins that are loaded at
run time. As not all of these origins are equally trusted, the execution of these scripts should
be isolated from one another. However, some scripts must access the application state and some
may be allowed to change it, while preserving the confidentiality and integrity constraints of the
application.

This paper presents design and implementation of DecentJS, a language-embedded sandbox
for full JavaScript. It enables scripts to run in a configurable degree of isolation with fine-grained
access control. It provides a transactional scope in which effects are logged for review by the
access control policy. After inspection of the log, effects can be committed to the application
state or rolled back.

The implementation relies on JavaScript proxies to guarantee full interposition for the full
language and for all code, including dynamically loaded scripts and code injected via eval. Its
only restriction is that scripts must be compliant with JavaScript’s strict mode.

1998 ACM Subject Classification D.4.6 Security and Protection

Keywords and phrases JavaScript, Sandbox, Proxy

1 Introduction

JavaScript is used by 93.1%1 of all the websites. Most of them rely on third-party libraries for
connecting to social networks, feature extensions, or advertisement. Some of these libraries
are packaged with the application, but others are loaded at run time from origins of different
trustworthiness, sometimes depending on user input. To compensate for different levels of
trust, the execution of dynamically loaded code should be isolated from the application state.

Today’s state of the art in securing JavaScript applications that include code from
different origins is an all-or-nothing choice. Browsers apply protection mechanisms, such
as the same-origin policy [33] or the signed script policy [36], so that scripts either run in
isolation or gain full access.

While script isolation guarantees noninterference with the working of the application as
well as preservation of data integrity and confidentiality, there are scripts that must have
access to part of the application state to function meaningfully. As all included scripts run
with the same authority, the application script cannot exert fine-grained control over the use
of data by an included script.

Thus, managing untrusted JavaScript code has become one of the key challenges of
present research on JavaScript [2, 15, 5, 6, 32, 25, 30, 24, 23, 12]. Existing approaches are
either based on restricting JavaScript code to a statically verifiable language subset (e.g.,

1 according to http://w3techs.com/, status as of March 2016

© Matthias Keil and Peter Thiemann;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Transaction-based Sandboxing for JavaScript

Facebook’s FBJS [8] or Yahoo’s ADsafe [1]), on enforcing an execution model that only
forwards selected resources into an otherwise isolated compartment by filtering and rewriting
like Google’s Caja project [11], or on implementing monitoring facilities inside the JavaScript
engine [32].

However, these approaches have known deficiencies: the first two need to restrict usage
of JavaScript’s dynamic features, they do not apply to code generated at run time, and
they require extra maintenance efforts because their analysis and transformation needs to be
kept in sync with the evolution of the language. Implementing monitoring in the JavaScript
engine is fragile and incomplete: while efficient, such a solution only works for one engine
and it is hard to maintain due to the high activity in engine development and optimization.

Contributions

We present the design and implementation of DecentJS, a sandbox for JavaScript which
enforces noninterference (integrity and confidentiality) by run-time monitoring. Its design is
inspired by revocable references [39, 26] and SpiderMonkey’s compartment concept [41].

Compartments create a separate memory heap for each website, a technique initially
introduced to optimize garbage collection. All objects created by a website are only allowed
to touch objects in the same compartment. Proxies are the only objects that can cross the
compartment boundaries. They are used as cross compartment wrappers to make objects
accessible in other compartments.

DecentJS adapts SpiderMonkey’s compartment concept. Each sandbox implements a fresh
scope to run code in isolation to the application state. Proxies implement a membrane [39, 26]
to guarantee full interposition and to make objects accessible inside of a sandbox.

Outline of this Paper

The paper is organized as follows: Section 2 introduces DecentJS’s facilities from a program-
mer’s point of view. Section 3 recalls proxies and membranes from related work and explains
the principles underlying the implementation. Section 4 discusses DecentJS’s limitations and
Section 5 reports our experiences from applying sandboxing to a set of benchmark programs.
Finally, Section 6 concludes.

Appendix A presents an example demonstrating the sandbox hosting a third-party
library. Appendix B shows some example scenarios that already use the implemented system.
Appendix C shows the operational semantics of a core calculus with sandboxing. Appendix D
states some technical results. Appendix E discusses related work and Appendix ?? reports
our experiences from applying sandboxing to a set of benchmark programs.

2 Transaction-based Sandboxing: A Primer

This section introduces transaction-based sandboxing and shows a series of examples that
explains how sandboxing works.

Transactional sandboxing is inspired by the idea of transaction processing in database
systems [43] and transactional memory [35]. Each sandbox implements a transactional scope
the content of which can be examined, committed, or rolled back.

Central to our sandbox is the implementation of a membrane on values that cross the
sandbox boundary. The membrane supplies effect monitoring and guarantees noninterference.
Moreover, it features identity preservation and handles shadow objects. Shadow objects allow
sandbox-internal modifications of objects without effecting there origins. The modified version

M. Keil and P. Thiemann 3

1 function Node (value, left, right) {
2 this.value = value;
3 this.left = left;
4 this.right = right;
5 }
6 Node.prototype.toString = function () {
7 return (this.left?this.left + ", ":"") + this.value +(this.right?", "+this.right:"");
8 }
9 function heightOf (node) {

10 return Math.max(((node.left)?heightOf(node.left)+1:0), ((node.right)?heightOf(node.
right)+1:0));

11 }
12 function setValue (node) {
13 if (node) {
14 node.value=heightOf(node);
15 setValue(node.left);
16 setValue(node.right);
17 }
18 }

Figure 1 Implementation of Node. Each node object consists of a value field, a left node, and a
right node. Its prototype provides a toString method that returns a string representation. Function
heightOf computes the height of a node and function setValue replaces the value field of a node by
its height, recursively.

is only visible inside of the sandbox and different sandbox environments may manipulate the
same object.

Sandboxing provides transactions, a unit of effects that represent the set of modifications
(write effects) on its membrane. Effects enable to check for conflicts and differences, to
rollback particular modifications, or to commit a modification to its origin.

The implementation of the system is available on the web2.

2.1 Cross-Sandbox Access
We consider operations on binary trees as defined by Node in Figure 1 along with some
auxiliary functions. As an example, we perform operations on a tree consisting of one node
and two leaves. All value fields are initially 0.

19 var root = new Node(0, new Node(0), new Node(0));

Next, we create a new empty sandbox by calling the constructor Sandbox. Its first
parameter acts as the global object of the sandbox environment. It is wrapped in a proxy to
mediate all accesses and it is placed on top of the scope chain for code executing inside the
sandbox. The second parameter is a configuration object. A sandbox is a first class value
that can be used for several executions.

20 var sbx = new Sandbox(this, {/∗ some parameters ∗/});

2 https://github.com/keil/DecentJS

https://github.com/keil/DecentJS

4 Transaction-based Sandboxing for JavaScript

One use of a sandbox is to wrap invocations of function objects. To this end, the sandbox
API provides methods call, apply, and bind analogous to methods from Function.prototype.
For example, we may call setValue on root inside of sbx.

21 sbx.call(setValue, this, root);

The first argument of call is a function object that is decompiled and redefined inside the
sandbox. This step erases the function’s free variable bindings and builds a new closure
relative to the sandbox’s global object. The second argument, the receiver object of the call,
as well as the actual arguments of the call are wrapped in proxies to make these objects
accessible inside of the sandbox.

The wrapper proxies mediate access to their target objects outside the sandbox. Reads
are forwarded to the target unless there are local modifications. The return values are
wrapped in proxies, again. Writes produce a shadow value (cf. Section 3.2) that represents
the sandbox-internal modification of an object. Initially, this modification is only visible to
reads inside the sandbox.

Native objects, like the Math object in line 10, are also wrapped in a proxy, but their
methods cannot be decompiled because there exists no string representation. Thus, native
methods must either be trusted or forbidden. Fortunately, most native methods do not have
side effects, so we chose to trust them.

Given all the wrapping and sandboxing, the call in line 21 did not modify the root object:

22 root.toString(); // returns 0, 0, 0

But calling toString inside the sandbox shows the effect.

23 sbx.call(root.toString, root); // return 0, 1, 0

2.2 Effect Monitoring
During execution, each sandbox records the effects on objects that cross the sandbox mem-
brane. The resulting lists of effect objects are accessible through sbx.effects, sbx.readeffects,
and sbx.writeeffects which contain all effects, read effects, and write effects, respectively. All
three lists offer query methods to select the effects of a particular object.

24 sbx.call(heightOf, this, root);
25 var rects = sbx.effectsOf(this);
26 print(";;; Effects of this");
27 rects.foreach(function(i, e) {print(e)});

The code snippet above prints a list of all effects performed on this, the global object, by
executing the heightOf function on root. The output shows the resulting accesses to heightOf
and Math.

28 ;;; Effects of this
29 (1425301383541) has [name=heightOf]
30 (1425301383541) get [name=heightOf]
31 (1425301383543) has [name=Math]
32 (1425301383543) get [name=Math]
33 ...

The first column shows a timestamp, the second shows the name of the effect, and the last
column shows the name of the requested parameter. The list does not contain write accesses
to this. But there are write effects to value from the previous invocation of setValue.

M. Keil and P. Thiemann 5

34 var wectso = sbx.writeeffectsOf(root);
35 print(";;; Write Effects of root");
36 wectso.foreach(function(i, e) {print(e)});

37 ;;; Write Effects of root
38 (1425301634992) set [name=value]

2.3 Inspecting a Sandbox
The state inside and outside of a sandbox may diverge for different reasons. We distinguish
changes, differences, and conflicts.

A change indicates if the sandbox-internal value has been changed with respect to the
outside value. A difference indicates if the outside value has been modified after the sandbox
has concluded. For example, a difference to the previous execution of setValue arises if we
replace the left leaf element by a new subtree of height 1 outside of the sandbox.

39 root.left = new Node(new Node(0), new Node(0));

Changes and differences can be examined using an API that is very similar to the effect
API. There are flags to check whether a sandbox has changes or differences as well as iterators
over them.

A conflict arises in the comparison between different sandboxes. Two sandbox environ-
ments are in conflict if at least one sandbox modifies a value that is accessed by the other
sandbox later on. We consider only Read-After-Write and Write-After-Write conflicts. To
demonstrate conflicts, we define a function appendRight, which adds a new subtree on the
right.

40 function appendRight (node) {
41 node.right = Node(’a’, Node(’b’), Node(’c’));
42 }

To recapitulate, the global root is still unmodified and prints 0,0,0,0,0, whereas the root in
sbx prints 0,0,0,1,0. Now, let’s execute appendRight in a new sandbox sbx2.

43 var sbx2 = new Sandbox(this, {/∗ some parameters ∗/});
44 sbx2.call(appendRight, this, root);

Calling toString in sbx2 prints 0,0,0,0,b,a,c. However, the sandboxes are not in conflict, as
the following command show.

45 sbx.inConflictWith(sbx2); // returns false

While both sandboxes manipulate root, they manipulate different fields. sbx recalculates
the field value, whereas sbx2 replaces the field right. Neither reads data that has previously
been written by the other sandbox. However, this situation changes if we call setValue again,
which also modifies right.

46 sbx.call(setValue, this, root);
47 var cofts = sbx.conflictsWith(sbx2); // returns a list of conflicts
48 cofts.foreach(function(i, e) {print(e)});

It documents a read-after-write conflict:

1 Confict: (1425303937853) get [name=right]@SBX001 − (1425303937855) set [name=
right]@SBX002

6 Transaction-based Sandboxing for JavaScript

2.4 Transaction Processing
The commit operation applies select effects from a sandbox to its target. Effects may be
committed one at a time by calling commit on each effect object or all at once by calling
commit on the sandbox object.

49 sbx.commit();
50 root.toString(); // returns 0, 1, 0, 2, 0

The rollback operation undoes an existing manipulation and returns to its previous configur-
ation before the effect. Again, rollbacks can be done on a per-effect basis or for the sandbox
as a whole. However, a rollback did not remove the shadow object. Thus, after rolling back,
the values are still shadow values in sbx.

51 sbx.rollback();
52 root.toString(); // returns 0, 1, 0, 2, 0
53 sbx.call(toString, this, root); // returns 0, 0, 0, 0, 0

The revert operation resets the shadow object of a wrapped value. The following code snippet
reverts the root object in sbx.

54 sbx.revertOf(root);

Now, root’s shadow object is removed and the origin is visible again in the sandbox. Calling
toString inside of sbx returns 0,1,0,2,0.

3 Sandbox encapsulation

The implementation of DecentJS builds on two foundations: memory safety and reachability.
In a memory safe programming language, a program cannot access uninitialized memory or
memory outside the range allocated to a datastructure. An object reference serves as the
right to access the resources managed by the object along with the memory allocated to it.
In JavaScript, all resources are accessible via property read and write operations on objects.
Thus, controlling reads and writes is sufficient to control the resources.

DecentJS ensures isolation of the actual program code by intercepting each operation
that attempts to modify data visible outside the sandbox. To achieve this behavior, all
functions and objects crossing the sandbox boundary are wrapped in a membrane to ensure
that the sandboxed code cannot modify them in any way. This membrane is implemented
using JavaScript proxies [39].

More precisely, our implementation of sandboxing is inspired by Revocable Membranes [39,
37] and access control based on object capabilities [28]. Identity preserving membranes keep
the sandbox apart from the normal program execution: We encapsulate objects passed through
the membrane and redirect write operations to shadow objects (Section 3.2), we encapsulate
code (Section 3.3), and we withhold external bindings from a function (Section 3.4). No
unprotected value is passed inside the sandbox.

3.1 Proxies and membranes
A proxy is an object intended to be used in place of a target object. The proxy’s behavior
is controlled by a handler object that typically mediates access to the target object. Both,
target and handler, may be proxy objects themselves.

The handler object contains trap functions that are called when a trapped operation
is performed on the proxy. Operations like property read, property write, and function

M. Keil and P. Thiemann 7

Handler

Proxy Target

Proxy.x;
Proxy.x=1;

Handler.get(Target,’x’,Proxy);
Handler.set(Target,’x’,1,Proxy);

Target[’x’];
Target[’x’]=1;

Meta-Level
Base-Level

Figure 2 Proxy operations. The operation Proxy.x invokes the trapHandler.get(Target,’x’,Proxy)
(property get) and the property set operation Proxy.x=1 invokes Handler.set(Target,’x’,1,Proxy).

ProxyA

ProxyB

ProxyC

TargetA

TargetB

TargetC

x
y

z

x
y

z

Figure 3 Property access through an identity preserving membrane (dashed line around target
objects). The property access through the wrapper ProxyA.x returns a wrapper for TargetA.x. The
property access ProxyA.y returns the same wrapper as ProxyB.z.

application are forwarded to their corresponding trap. The trap function may implement the
operation arbitrarily, for example, by forwarding the operation to the target object. The
latter is the default behavior if the trap is not specified.

Figure 2 illustrates this situation with a handler that forwards all operations to the target.
A membrane is a regulated communication channel between an object and the rest of

the program. A membrane is implemented by a proxy that guards all operations on its
target. If the result of an operation is another object, then it is recursively wrapped in a
membrane before it is returned. This way, all objects accessed through an object behind the
membrane are also behind the membrane. Common use cases of membranes are revoking all
references to an object network at once or enforcing write protection on the objects behind
the membrane [39, 26].

Figure 3 shows a membrane for TargetA implemented by wrapper ProxyA. Each property
access through a wrapper (e.g., ProxyA.x) returns a wrapped object. After installing the
membrane, no new direct references to target objects behind the membrane become available.

An identity preserving membrane guarantees that no target object has more than one
proxy. Thus, proxy identity outside the membrane reflects target object identity inside. For
example, if TargetA.x.z and TargetA.y refer to the same object (TargetA.x.z===TargetA.y),

8 Transaction-based Sandboxing for JavaScript

Handler

Proxy Target Shadow

Proxy.x;
Proxy.y=1;
Proxy.y;

Handler.get(Target,’x’,Proxy);
Handler.set(Target,’y’,1,Proxy);
Handler.get(Target,’y’,Proxy);

Target[’x’]; Shadow[’y’]=1;
Shadow[’y’];

Meta-Level
Base-Level

Figure 4 Operations on a sandbox. The property get operation Proxy.x invokes the trap Handler.
get(Target,’x’,Proxy), which forwards the operation to the proxy’s target. The property set operation
Proxy.y=1 invokes the trap Handler.set(Target,’y’,1,Proxy), which forwards the operation to a local
shadow object. The final property get operation Proxy.y is than also forwarded to the shadow object.

then ProxyA.x.z and ProxyA.y refer to the same wrapper object (ProxyA.x.z===ProxyA.y).

3.2 Shadow objects
Our sandbox redefines the semantics of proxies to implement expanders [42], an idea that
allows a client side extension of properties without modifying the proxy’s target.

A sandbox handler manages two objects: a target object and a local shadow object. The
target object acts as a parent object for its proxy whereas the shadow object gathers local
modifications. Write operations always take place on the shadow object. A read operation
first attempts to obtain the property from the shadow object. If that fails, the read gets
forwarded to the target object. Figure 4 illustrates this behavior, which is very similar to
JavaScript’s prototype chain: the sandboxed version of an object inherits everything from its
outside cousin, whereas modifications only appear inside the sandbox3.

As sandbox encapsulation extends the functionality of a membrane, each object visible
inside the sandbox is either an object that was created inside or it is a wrapper for some
outside object.

A special proxy wraps sandbox internal values whenever committing a value to the
outside, as shown in the last example. This step mediates uses of a sandbox internal
value in the outside. This is form example required to wrap arguments values passed to
committed sandbox function. The wrapping guarantees that the sandbox never gets access
to unprotected references to the outside.

3.3 Sandbox scope
Apart from access restrictions, protecting the global state from modification through the
membrane is fundamental to guarantee noninterference. To execute program code, DecentJS
relies on an eval, which is nested in a statement with (sbxglobal) {/∗ body ∗/}. The with

3 Getter and setter functions require special treatment. Like other functions, they are decompiled and
then applied to the shadow object. See Section 3.4.

M. Keil and P. Thiemann 9

var node = new Node(/∗ some sub−nodes ∗/);
var sbx = new Sandbox(this, /∗ some parameters ∗/);

with(sbxglobal){

(function(){
‘‘use strict’’;

function setValue(){
if(node){
node.value=heightOf(node);
setValue(node.left);
setValue(node.right);

}
}

})();

}

Figure 5 Scope chain installed by the sandbox when loading setValue. The dark box represents
the global scope. The dashed line indicates the sandbox boundary and the inner box shows the
program code nested inside.

statement places the sandbox global on top of the current environment’s scope chain while
executing body. This setup exploits that eval dynamically rebinds the free variables of its
argument to whatever is in scope at its call site. In this construction, which is related to
dynamic binding [14], any property defined in sbxglobal shadows a variable deeper down in
the scope chain.

We employ a proxy object in place of sbxglobal to control all non-local variable accesses
in the sandboxed code by trapping the sandbox global object’s hasOwnProperty method.
When JavaScript traverses the scope chain to resolve a variable access, it calls the method
hasOwnProperty on the objects of the scope chain starting from the top. Inside the with
statement, the first object that is checked on this traversal is the proxied sandbox global.
If its hasOwnProperty method always returns true, then the traversal stops here and the
JavaScript engine sends all read and write operations for free variables to the sandbox global.
This way, we obtain full interposition and the handler of the proxied sandbox global has
complete control over the free variables in body.

Figure 5 visualizes the nested scopes created during the execution of setValue as in the
example from Section 2. The sandbox global sbxglobal is a wrapper for the actual global
object, which is used to access heightOf and Math.abs. The library code is nested in an
empty closure which provides a fresh scope for local functions and variables. This step is
required because JavaScript did not have standalone block scopes such as blocks in C or

10 Transaction-based Sandboxing for JavaScript

Sandbox1 Sandbox2 Sandbox3

Global Scope

JSCodeJSCode JSCode

Figure 6 Nested sandboxes in an application. The outer box represents the global application
state containing JavaScript’s global scope. Each sandbox has its own global object and the nested
JavaScript code is defined w.r.t. to the sandbox global.

Java. Variables and named functions 4 created by the sandboxed code end up in this fresh
scope. This extra scope guarantees noninterference for dynamically loaded scripts that define
global variables and functions.

The "use strict"5 declaration in front of the closure puts JavaScript in strict mode, which
ensures that the code cannot obtain unprotected references to the global object.

Figure 6 shows the situation when instantiating different sandboxes during program
execution. Every sandbox installs its own scope with a sandbox global on top of the scope
chain. Scripts nested inside are defined with respect to the sandbox global. The sandbox
global mediates the access to JavaScript’s global object. Its default implementation is empty
to guarantee isolation. However, DecentJS can grant fine-grained access by making resources
available in the sandbox global.

3.4 Function recompilation

In JavaScript, functions have access to the variables and functions in the lexical scope
in which the function was defined. The Mozilla documentation6 says: “It remembers the
environment in which it was created.”. Calls to wrapped functions may still cause side effects
through their free variables (e.g., by modifying a variable or by calling another side-effecting
function). Thus, sandboxing either has to erase external bindings of functions or it has to
verify that a function is free of side effects. The former alternative is the default in DecentJS.

To remove bindings from functions passed through the membrane our protection mechan-
ism decompiles the function and recompiles it inside the sandbox environment. Decompilation
relies on the standard implementation of the toString method of a JavaScript function that
returns a string containing the source code of the function. Each use of an external function
in a sandbox first decompiles it by calling its toString method. To bypass potential tampering,
we use a private copy of Function.prototype.toString for this call.

Next, we apply eval to the resulting string to create a fresh variant of the function. As
explained in Section 3.3, this application of eval is nested in a with statement that supplies
the desired environment. Decompilation also places a "use strict" statement in front.

To avoid a frequent decompilation and call of eval with respect to the same code, our
implementation caches the compiled function where applicable.

4 Function created with function name() {/∗ body ∗/}.
5 Strict mode requires that a use of this inside a function is only valid if either the function was called as
a method or a receiver object was specified explicitly using apply or call.

6 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures

M. Keil and P. Thiemann 11

Instead of recompiling a function, we may use the string representation of a function to
verify that a function is free of side effects, for example, by checking if the function’s body is
SES-compliant7 [34]. However, it turns out that recompiling a function has a lower impact
on the execution time than analyzing the function body.

Functions without a string representation (e.g., native functions like Object or Array)
cannot be verified or sanitized before passing them through the membrane. We can either
trust these functions or rule them out. To this end, DecentJS may be provided with a white
list of trusted function objects. In any case, functions remain wrapped in a sandbox proxy
to mediate property access.

In addition to normal function and method calls, the access to a property that is bound
to a getter or setter function needs to decompile or verify the getter or setter before its
execution.

3.5 DOM updates
The Document Object Model (DOM) is an API for manipulating HTML and XML documents
that underlie the rendering of a web page. DOM provides a representation of the document’s
content and it offers methods for changing its structure, style, content, etc. In JavaScript, this
API is implemented using special objects, reachable from the document object. Unfortunately,
the document tree itself is not an object in the programming language. Thus, it cannot
be wrapped for use inside of a sandbox. The only possibility is to wrap the interfaces, in
particular, the document object.

We grant access to the DOM by binding the DOM interfaces to the sandbox global when
instantiating a new sandbox. As all interfaces are wrapped in a sandbox proxy to mediate
access, there are a number of limitations:

By default, DOM nodes are accessed by calling query methods like getElementById on
the document object. Effect logging recognizes these accesses as method calls, rather than
as operations on the DOM.
All query functions are special native functions that do not have a string representation.
Decompilation is not possible so that using a query function must be permitted explicitly
through the white list.
A query function must be called as a method of an actual DOM object implementing
the corresponding interface. Thus, DOM objects cannot be wrapped like other objects,
but they require a special wrapping that calls the method on the correct receiver object.
While read operations can be managed in this way, write operations must either be
forbidden or they affect the original DOM.

Thus, guest code can modify the original DOM unless the DOM interface is restricted
to read-only operations. With unrestricted operations it would be possible to insert new
<script> elements in the document, which loads scripts from the internet and executes
them in the normal application state without further sandboxing. However, prohibiting write
operation means that the majority of guest codes cannot be executed in the sandbox.

To overcome this limitation, DecentJS provides guest code access to an emulated DOM
instead of the real one. We rely on dom.js8, a JavaScript library emulating a full browser
DOM, to implement a DOM interface for scripts running in the sandbox. This emulated
DOM is merged into the global sandbox object when executing scripts.

7 In SES, a function can only cause side effects on values passed as an argument.
8 https://github.com/andreasgal/dom.js/

https://github.com/andreasgal/dom.js/

12 Transaction-based Sandboxing for JavaScript

As this pseudo DOM is constructed inside the sandbox, it can be accessed and modified
at will. No special treatment is required. However, the pseudo DOM is wrapped in a special
membrane mediating all operations and performing effect logging on all DOM elements.

As each sandbox owns a direct reference to the sandbox internal DOM it provides the
following features to the user:

The sandbox provides an interface to the sandbox internal DOM and enables the host
program to access all aspects of the DOM. This interface can control the data visible to
the guest program.
A host can load a page template before evaluating guest code. This template can be an
arbitrary HTML document, like the host’s page or a blank web page. As most libraries
operate on non-blank page documents (e.g., by reading or writing to a particular element)
this template can be used to create an environment.
Guest code runs without restrictions. For example, guest code can introduce new <
script> elements to load library code from the internet. These libraries are loaded and
executed inside the sandbox as well.
All operations on the interface objects are recorded, for example, the access to window
.location when loading a document. Effects can examined using a suitable API (cf.
Section 2.2).
The host program can perform a fine-grained inspection of the document tree (e.g., it can
search for changes and differences). The host recognizes newly created DOM elements
and it can transfer content from the sandbox DOM to the DOM of the host program.

3.6 Policies

A policy is a guideline that prescribes whether an operation is allowed. Most existing sandbox
systems come with a facility to define policies. For example, a policy may grant access to a
certain resource, it may grant the right to perform an operation or to cause a side effect.

Our system does not provide access control policies in the manner known from other
systems. DecentJS only provides the mechanism to implement an empty scope and to pass
selected resources to this scope. When a reference to a certain resource is made available
inside the sandbox, then it should be wrapped in another proxy membrane that enforces a
suitable policy.

For example, one may use this work’s transactional membranes to shadow write operations,
Access Permission Contracts [18] to restrict the access on objects, or Revocable References [39,
40] to revoke access to the outside world.

4 Discussion

Strict Mode

DecentJS runs guest code in JavaScript’s strict mode to rule out uncontrolled accesses to
the global object. This restriction may lead to dysfunctional guest code because strict-mode
semantics is subtly different from non-strict mode JavaScript.

However, assuming strict mode is less restrictive than the restrictions imposed by other
techniques that restrict JavaScript’s dynamic features. Alternatively, one could also provide
a program transformation that guards uses of this that may access the global object.

M. Keil and P. Thiemann 13

Scopes

DecentJS places every load in its own scope. Hence, variables and functions declared in one
script are not visible to the execution of another script in the same sandbox. Indeed, we
deliberately keep scopes apart to avoid interference. To enable communication DecentJS
offers a facility to load mutually dependant scripts into the same scope. Otherwise, scripts
may exchange data by writing to fields in the sandbox global object.

Function Decompilation

If a top level closure is wrapped in a sandbox, then its free valriables have to be declared to
the sandbox or their bindings are removed. Decompilation may change the meaning of a
function, because it rebinds its free variables. Only “pure functions”9 can be decompiled
without changing their meaning.

However, decompiling preserves the semantics of a function if its free variables are
imported in the sandbox. The new closure formed within the sandbox may be closed over
variables defined in that sandbox. This task is rightfully manual as the availability of global
bindings is part of a policy.

In conclusion, decompilation is unavoidable to guarantee noninterference of a function
defined in another scope as every property read operation may be the call of a side-effecting
getter function.

Native Functions

Decompilation requires a string that contains the source code of that function, but calling
the standard toString method from Function.prototype does not work for all functions.

A native function does not have a string representation. Trust in a native function is
regulated with a white list of trusted functions.
The Function.prototype.bind() method creates a new function with the same body, but
the first couple of arguments bound to the arguments of bind(). JavaScript does not
provide a string representation for the newly created function.

Object, Array, and Function Initializer

In JavaScript, some objects can be initialized using a literal notation (initializer notation).
Examples are object literals (using {}), array objects (using []), and function objects (using
the named or unnamed function expression, e.g. function (){}). Using the literal notation
circumvents all restrictions and wrappings that we may have imposed on the Object, Array,
and Function constructors.

As we are not able to intercept the construction using the literal notation enables
unprotected read access to the prototype objects Object.prototype, Array.prototype, and
Function.prototype. The newly created object always inherits from the corresponding proto-
type.

However, we will never get access to the prototype object itself and we are not able to
modify the prototype. Writes to the created objects always effect the object itself and are
never forwarded to the prototype object.

9 A pure function is a function that only maps its input into an output without causing any observable
side effect.

14 Transaction-based Sandboxing for JavaScript

Even though all the elements contained in the native prototype objects are uncritical by
default, a global (not sandboxed) script could add sensitive data or a side effecting function
to one of the prototype objects and thus bypass access to unprotected data.

Function Constructor

The function constructor Function creates a new function object based on the definition
given as arguments. In contrast to function statements and function expressions, the function
constructor ignores the surrounding scope. The new function is always created in the global
scope and calling it enables access to all global variables.

To prevent this leakage, the sandbox never grants unwrapped access to JavaScipt’s global
Function constructor even if the constructor is white-listed as a safe native function. A
special wrapping intercepts the operations and uses a safe way to construct a new function
with respect to the sandbox.

Noninterference

The execution of sandboxed code should not interfere with the execution of application code.
That is, the application should run as if no sandboxes were present. This property is called
noninterference (NI) [10] by the security community. The intuition is that sandboxed code
runs at a lower level of security than application code and that the low-security sandbox code
must not be able to observe the results of the high-security computation in the global scope.

DecentJS guarantees integrity and confidentiality. The default “empty” sandbox guaran-
tees to run code in full isolation from the rest of the application, whereas the sandbox global
can provide protected references to the sandbox.

In summary, the sandboxed code may try to write to an object that is visible to the
application, it may throw an exception, or it may not terminate. Our membrane redirects
all write operations in sandboxed code to local replicas and it captures all exceptions. A
timeout could be used to transform non-terminating executions into an exception, alas such
a timeout cannot be implemented in JavaScript.10

5 Evaluation

To evaluate our implementation, we applied it to JavaScript benchmark programs from the
Google Octane 2.0 Benchmark Suite11. These benchmarks measure a JavaScript engine’s per-
formance by running a selection of complex and demanding programs (benchmark programs
run between 5 and 8200 times). Google claims that Octane “measure[s] the performance of
JavaScript code found in large, real-world web applications, running on modern mobile and
desktop browsers. Each benchmark is complex and demanding .

As expected, the run time increases when executing a benchmark in a sandbox. While
some programs like EarleyBoyer, NavierStrokes, pdf.js, Mandreel, and Box2DWeb are heavily
affected, others are only slightly affected: Richards, Crypto, RegExp, and Code loading, for
instance. The observed run time impact entirely depends on the number of values that cross
the membrane.

10The JavaScript timeout function only schedules a function to run when the currently running JavaScript
code—presumably some event handler—stops. It cannot interrupt a running function.

11 https://developers.google.com/octane

https://developers.google.com/octane

M. Keil and P. Thiemann 15

From the running times we find that the sandbox itself causes an average slowdown of 8.01
(over all benchmarks). This is more than acceptable compared to other language-embedded
systems. The numbers also show that sandboxing with fine-grained effect logging enabled
causes an average slowdown of 32.60, an additional factor of 4.07 on top of pure sandboxing.

Because the execution of program code inside of a sandbox is nothing else than a normal
program execution inside of a with statement and with one additional call to eval (when
instantiating the execution) the run-time impact is influenced by (i) the number of wrap
operations of values that cross the membrane, (ii) the number of decompile operations on
functions, and (iii) the number of effects on wrapped objects. Readouts from internal counters
indicate that the heavily affected benchmarks (RayTrace, pdf.js, Mandreel, and Box2DWeb)
perform a very large number of effects. The RayTrace benchmark, for example, performs
51 million effects.

Overall, an average slowdown of 8.01 is more than acceptable compared to other language-
embedded systems. As Octane is intended to measure the engine’s performance (benchmark
programs run between 5 and 8200 times) we claim that it is the heaviest kind of benchmark.
Every real-world library (e.g. jQuery) is less demanding and runs without an measurable
runtime impact.

Appendix F also contains the score values obtained from running the benchmark suite
and lists the readouts of some internal counters.

6 Conclusion

DecentJS runs JavaScript code in a configurable degree of isolation with fine-grained access
control rather than disallowing all access to the application state. It provides full browser
compatibility (i.e. all browsers work without modifications as long as the proxy API is
supported) and it has a better performance than other language-embedded systems.

Additionally, DecentJS comes with the following features:

1. Language-embedded sandbox. DecentJS is a JavaScript library and all aspects are accessible
through a sandbox API. The library can be deployed as a language extension and requires
no changes in the JavaScript run-time system.

2. Full interposition. DecentJS is implemented using JavaScript proxies [39]. The proxy-
based implementation guarantees full interposition for the full JavaScript language
including all dynamic features (e.g., with, eval). DecentJS works for all code regardless
of its origin, including dynamically loaded code and code injected via eval. No source
code transformation or avoidance of JavaScript’s dynamic features is required.

3. Transaction-based sandboxing. A DecentJS sandbox provides a transactional scope that
logs all effects. Wrapper proxies make external objects accessible inside of the sandbox
and enable sandbox internal modifications of the object. Hence, sandboxed code runs
as usual without noticing the sandbox. Effects reveal conflicts, differences, and changes
with respect to another sandbox or the global state. After inspection of the log, effects
can be committed to the application state or rolled back.

Acknowledgments This work benefited from discussions with participants of the Dagstuhl
Seminar “Scripting Languages and Frameworks: Analysis and Verification” in 2014. In
particular, Tom Van Cutsem provided helpful advice on the internals of JavaScript proxies.

16 Transaction-based Sandboxing for JavaScript

References
1 Adsafe: Making JavaScript safe for advertising. http://www.adsafe.org/, 2015.
2 P. Agten, S. V. Acker, Y. Brondsema, P. H. Phung, L. Desmet, and F. Piessens. JSand:

complete client-side sandboxing of third-party JavaScript without browser modifications.
In R. H. Zakon, editor, 28th Annual Computer Security Applications Conference, ACSAC
2012, Orlando, FL, USA, 3-7 December 2012, pages 1–10. ACM, 2012.

3 J. Arnaud, M. Denker, S. Ducasse, D. Pollet, A. Bergel, and M. Suen. Read-only execution
for dynamic languages. In J. Vitek, editor, Objects, Models, Components, Patterns, 48th
International Conference, TOOLS 2010, Málaga, Spain, June 28 - July 2, 2010. Proceed-
ings, volume 6141 of Lecture Notes in Computer Science, pages 117–136, Málaga, Spain,
June 2010. Springer.

4 A. Charguéraud. Pretty-big-step semantics. In M. Felleisen and P. Gardner, editors, ESOP,
volume 7792 of Lecture Notes in Computer Science, pages 41–60, Rome, Italy, Mar. 2013.
Springer.

5 A. Dewald, T. Holz, and F. C. Freiling. ADSandbox: sandboxing JavaScript to fight
malicious websites. In S. Y. Shin, S. Ossowski, M. Schumacher, M. J. Palakal, and C.-C.
Hung, editors, Proceedings of the 2010 ACM Symposium on Applied Computing (SAC),
Sierre, Switzerland, March 22-26, 2010, pages 1859–1864, Sierre, Switzerland, 2010. ACM.

6 M. Dhawan and V. Ganapathy. Analyzing information flow in JavaScript-based browser
extensions. In Twenty-Fifth Annual Computer Security Applications Conference, ACSAC
2009, Honolulu, Hawaii, 7-11 December 2009, pages 382–391. IEEE Computer Society,
2009.

7 M. Dhawan, C. Shan, and V. Ganapathy. Enhancing JavaScript with transactions. In
J. Noble, editor, ECOOP 2012 - Object-Oriented Programming - 26th European Conference,
Beijing, China, June 11-16, 2012. Proceedings, volume 7313 of Lecture Notes in Computer
Science, pages 383–408. Springer, 2012.

8 Facebook SDK for JavaScript. https://developers.facebook.com/docs/javascript/,
2015.

9 A. Felt, P. Hooimeijer, D. Evans, and W. Weimer. Talking to strangers without taking
their candy: isolating proxied content. In L. Stein and A. Mislove, editors, Proceedings of
the 1st Workshop on Social Network Systems, SNS 2008, Glasgow, Scotland, UK, April 1,
2008, pages 25–30. ACM, 2008.

10 J. A. Goguen and J. Meseguer. Security policies and security models. In IEEE Symposium
on Security and Privacy, pages 11–20, 1982.

11 google-caja: A source-to-source translator for securing JavaScript-based web content. http:
//code.google.com/p/google-caja/, (as of 2011).

12 S. Guarnieri and V. B. Livshits. GATEKEEPER: mostly static enforcement of security
and reliability policies for JavaScript code. In F. Monrose, editor, 18th USENIX Security
Symposium, Montreal, Canada, August 10-14, 2009, Proceedings, pages 151–168. USENIX
Association, 2009.

13 A. Guha, C. Saftoiu, and S. Krishnamurthi. The essence of JavaScript. In T. D’Hondt, ed-
itor, ECOOP, volume 6183 of Lecture Notes in Computer Science, pages 126–150, Maribor,
Slovenia, June 2010. Springer.

14 D. R. Hanson and T. A. Proebsting. Dynamic variables. In Proceedings of the 2001 Con-
ference on Programming Language Design and Implementation, pages 264–273, Snowbird,
UT, USA, June 2001. ACM Press, New York, USA.

15 D. Hedin et al. JSFlow: Tracking information flow in JavaScript and its APIs. In ACM
Symposium on Applied Computing (SAC’14), Gyeongju, Korea, Mar. 2014.

16 P. Heidegger, A. Bieniusa, and P. Thiemann. Access permission contracts for scripting
languages. In J. Field and M. Hicks, editors, Proceedings 39th Annual ACM Symposium on

http://www.adsafe.org/
https://developers.facebook.com/docs/javascript/
http://code.google.com/p/google-caja/
http://code.google.com/p/google-caja/

M. Keil and P. Thiemann 17

Principles of Programming Languages, pages 111–122, Philadelphia, USA, Jan. 2012. ACM
Press.

17 P. Heidegger and P. Thiemann. A heuristic approach for computing effects. In J. Bishop
and A. Vallecillo, editors, Proceedings of the 49th International Conference on Objects,
Models, Components and Patterns, volume 6705 of Lecture Notes in Computer Science,
pages 147–162, Zurich, Switzerland, June 2011. Springer.

18 M. Keil and P. Thiemann. Efficient dynamic access analysis using JavaScript proxies. In
Proceedings of the 9th Symposium on Dynamic Languages, DLS ’13, pages 49–60, New York,
NY, USA, 2013. ACM.

19 M. Keil and P. Thiemann. Efficient dynamic access analysis using JavaScript proxies. In
Proceedings of the 9th Symposium on Dynamic Languages, DLS ’13, pages 49–60, Indiana-
polis, Indiana, USA, 2013. ACM.

20 M. Keil and P. Thiemann. Treatjs: Higher-order contracts for JavaScript. In J. Boyland,
editor, 29th European Conference on Object-Oriented Programming, ECOOP 2015, July
5-10, 2015, Prague, Czech Republic, volume 37 of LIPICS, pages 28–51, Prague, Czech
Repulic, July 2015. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik.

21 M. Keil and P. Thiemann. TreatJS: Higher-order contracts for JavaScript. Technical report,
Institute for Computer Science, University of Freiburg, 2015.

22 M. Keil and P. Thiemann. TreatJS Online. http://www2.informatik.uni-freiburg.de/
~keilr/treatjs/, 2015.

23 S. Maffeis and A. Taly. Language-based isolation of untrusted JavaScript. In Proceedings
of the 22nd IEEE Computer Security Foundations Symposium, CSF 2009, Port Jefferson,
New York, USA, July 8-10, 2009, pages 77–91. IEEE Computer Society, 2009.

24 J. Magazinius, P. H. Phung, and D. Sands. Safe wrappers and sane policies for self pro-
tecting JavaScript. In T. Aura, editor, The 15th Nordic Conference in Secure IT Systems,
Lecture Notes in Computer Science. Springer Verlag, Oct. 2010.

25 L. A. Meyerovich and V. B. Livshits. ConScript: Specifying and enforcing fine-grained
security policies for JavaScript in the browser. In IEEE Symposium on Security and Privacy,
pages 481–496, Berkeley/Oakland, California, USA, May 2010. IEEE Computer Society.

26 M. S. Miller. Robust Composition: Towards a Unified Approach to Access Control and
Concurrency Control. PhD thesis, Johns Hopkins University, Baltimore, MD, USA, 2006.
AAI3245526.

27 M. S. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay. Caja: Safe active content in
sanitized JavaScript. http://google-caja.googlecode.com, 2008. Google White Paper.

28 M. S. Miller and J. S. Shapiro. Paradigm regained: Abstraction mechanisms for access con-
trol. In V. A. Saraswat, editor, Advances in Computing Science - ASIAN 2003 Programming
Languages and Distributed Computation, 8th Asian Computing Science Conference, Mum-
bai, India, December 10-14, 2003, Proceedings, volume 2896 of Lecture Notes in Computer
Science, pages 224–242. Springer, 2003.

29 K. Patil, X. Dong, X. Li, Z. Liang, and X. Jiang. Towards fine-grained access control
in JavaScript contexts. In 2011 International Conference on Distributed Computing Sys-
tems, ICDCS 2011, Minneapolis, Minnesota, USA, June 20-24, 2011, pages 720–729. IEEE
Computer Society, 2011.

30 P. H. Phung, D. Sands, and A. Chudnov. Lightweight self-protecting JavaScript. In W. Li,
W. Susilo, U. K. Tupakula, R. Safavi-Naini, and V. Varadharajan, editors, ASIACCS, pages
47–60, Sydney, Australia, Mar. 2009. ACM.

31 J. G. Politz, S. A. Eliopoulos, A. Guha, and S. Krishnamurthi. ADsafety: Type-based
verification of JavaScript sandboxing. In 20th USENIX Security Symposium, San Francisco,
CA, USA, August 8-12, 2011, Proceedings. USENIX Association, 2011.

http://www2.informatik.uni-freiburg.de/~keilr/treatjs/
http://www2.informatik.uni-freiburg.de/~keilr/treatjs/
http://google-caja.googlecode.com

18 Transaction-based Sandboxing for JavaScript

32 G. Richards, C. Hammer, F. Z. Nardelli, S. Jagannathan, and J. Vitek. Flexible access
control for JavaScript. In A. L. Hosking, P. T. Eugster, and C. V. Lopes, editors, Proceedings
of the 2013 ACM SIGPLAN International Conference on Object Oriented Programming
Systems Languages & Applications, OOPSLA 2013, part of SPLASH 2013, Indianapolis,
IN, USA, October 26-31, 2013, pages 305–322. ACM, 2013.

33 Same-origin policy. https://developer.mozilla.org/en-US/docs/Web/Security/
Same-origin_policy/, 2008.

34 SecureEcmaScript (ses). https://code.google.com/p/es-lab/wiki/SecureEcmaScript,
2015.

35 N. Shavit and D. Touitou. Software transactional memory. In Proceedings of the 14th ACM
SIGPLAN Symposium on Principles of Distributed Computing, pages 204–213, Ottowa,
Ontario, Canada, 1995. ACM Press, New York, NY, USA.

36 Signed scripts in Mozilla. http://www-archive.mozilla.org/projects/security/
components/signed-scripts.html/, 2015.

37 T. S. Strickland, S. Tobin-Hochstadt, R. B. Findler, and M. Flatt. Chaperones and im-
personators: Run-time support for reasonable interposition. In G. T. Leavens and M. B.
Dwyer, editors, OOPSLA, pages 943–962. ACM, 2012.

38 J. Terrace, S. R. Beard, and N. P. K. Katta. JavaScript in JavaScript (js.js): Sandboxing
third-party scripts. In E. M. Maximilien, editor, 3rd USENIX Conference on Web Applica-
tion Development, WebApps’12, Boston, MA, USA, June 13, 2012, pages 95–100. USENIX
Association, 2012.

39 T. Van Cutsem and M. S. Miller. Proxies: Design principles for robust object-oriented
intercession APIs. In W. D. Clinger, editor, DLS, pages 59–72. ACM, 2010.

40 T. Van Cutsem and M. S. Miller. Trustworthy proxies - virtualizing objects with invariants.
In G. Castagna, editor, ECOOP, volume 7920 of Lecture Notes in Computer Science, pages
154–178, Montpellier, France, July 2013. Springer.

41 G. Wagner, A. Gal, C. Wimmer, B. Eich, and M. Franz. Compartmental memory manage-
ment in a modern web browser. In H. Boehm and D. F. Bacon, editors, Proceedings of the
10th International Symposium on Memory Management, ISMM 2011, San Jose, CA, USA,
June 04 - 05, 2011, pages 119–128. ACM, 2011.

42 A. Warth, M. Stanojevic, and T. Millstein. Statically scoped object adaptation with ex-
panders. In Proceedings of the 21th ACM SIGPLAN Conference on Object Oriented Pro-
gramming, Systems, Languages, and Applications, pages 37–56, Portland, OR, USA, 2006.
ACM Press, New York.

43 G. Weikum and G. Vossen. Transactional information systems: theory, algorithms, and
the practice of concurrency control and recovery. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2001.

https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy/
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy/
https://code.google.com/p/es-lab/wiki/SecureEcmaScript
http://www-archive.mozilla.org/projects/security/components/signed-scripts.html/
http://www-archive.mozilla.org/projects/security/components/signed-scripts.html/

M. Keil and P. Thiemann 19

1 <!DOCTYPE html>
2 <html lang="en">
3 <head>
4 <!−− third−party libraries −−>
5 <script src="date.js"></script>
6 <script src="jquery.js"></script>
7 <script src="jquery.formatDateTime.js"></script>
8 </head>
9 <body>

10 <!−− Body of the page −−>
11 <h1 id="headline">Headline</h1>
12 <script type="text/javascript">
13 window.$("#headline").text("Changed Headline");
14 </script>
15 </body>
16 </html>

Figure 7 Motivating Example. The listing shows a snippet of an index.html file. The <script>
tags load third-party libraries to the application state before executing the body. Within the <body>
tag it uses jQuery to modify the DOM.

A Motivation

JavaScript is the most important client side language for web pages. JavaScript developers
rely heavily on third-party libraries for calenders, maps, social networking, feature extensions,
and so on. Thus, the client-side code of a web page is usually composed of dynamically
loaded fragments from different origins.

However, the JavaScript language has no provision for namespaces or encapsulation
management: there is a global scope for variables and functions, and every loaded script
has the same authority. On the one hand, JavaScript developers benefit from JavaScript’s
flexibility as it enables to extend the application state easily. On the other hand, once
included, a script has the ability to access and manipulate every value reachable from the
global object. That makes it difficult to enforce any security policy in JavaScript.

As a consequence, program understanding and maintenance becomes very difficult because
side effects may cause unexpected behavior. There is also a number of security concerns as
the library code may access sensitive data, for example, it may read user input from the
browser’s DOM.

Browsers normally provide build-in isolation mechanisms. However, as isolation is not
always possible for all scrips, the key challenges of a JavaScript developer is to manage
untrusted third-party code, to control the use of data by included scrips, and to reason about
effects of included code.

20 Transaction-based Sandboxing for JavaScript

17 <!DOCTYPE html>
18 <html lang="en">
19 <head>
20 <!−− DecentJS code−−>
21 <script src="decent.js"></script>
22 <!−− Runs Datejs in a fresh sandbox. −−>
23 <script type="text/javascript">
24 var sbx = new Sandbox(this, Sandbox.DEFAULT);
25 sbx.request("datejs.js");
26 sbx.applyRule(
27 new Rule.CommitOn(Date, function(sbx, effect) {
28 return (effect instanceof Effect.Set) &&
29 !(effect.name in Date);
30 }));
31 </script>
32 <!−− ... −−>
33 </head>
34 <body>
35 <!−− ... −−>
36 </body>
37 </html>

Figure 8 Execution of library code in a sandbox. The first <script> tag loads the sandbox
implementation. The body of the second <script> tag instantiates a new sandbox and loads and
executes Datejs inside the sandbox. Later it commits intended effects to the native Date object.

A.1 JavaScript issues
As an example, we consider a web application that relies on third-party scripts from various
sources. Figure 7 shows an extract of such a page. It first includes Datejs12, a library extend-
ing JavaScript’s native Date object with additional methods for parsing, formatting, and
processing of dates. Next, it loads jQuery13 and a jQuery plugin jquery.formatDateTime.js14
that also simplifies formatting of JavaScript date objects.

At this point, we want to ensure that loading the third-party code (Datejs and jQuery)
does not influence the application state in an unintended way. Encapsulating the library
code in a sandbox enables us to scrutinize modifications that the foreign code may attempt
and only commit acceptable modifications.

A.2 Isolating third-party JavaScript
Transactional sandboxing is inspired by the idea of transaction processing in database sys-
tems [43] and software transactional memory [35]. Each sandbox implements a transactional
scope the content of which can be examined, committed, or rolled back.

1. Isolation of code. A DecentJS sandbox can run JavaScript code in isolation to the

12 https://github.com/datejs/Datejs
13 https://jquery.com/
14 https://github.com/agschwender/jquery.formatDateTime

https://github.com/datejs/Datejs
https://jquery.com/
https://github.com/agschwender/jquery.formatDateTime

M. Keil and P. Thiemann 21

application state. Proxies make external values visible inside of the sandbox and handle
sandbox internal write operations. An internal DOM simulates the browser DOM as
needed. This setup guarantees that the isolated code runs without noticing the sandbox.

2. Providing transactional features. A DecentJS sandbox provides a transactional scope in
which effects are logged for inspection. Policy rules can be specified so that only effects
that adhere to the rules are committed to the application state and others are rolled back.

Appendix 2 gives a detailed introduction to DecentJS’s API and provides a series of examples
explaining its facilities.

Figure 8 shows how to modify the index.html from Figure 7 to load the third-party
code into a sandbox. We first focus on Datejs and consider jQuery later in Section A.4.
The <!−− ... −−> comment is a placeholder for unmodified code not considered in this
example15.

Initially, we create a fresh sandbox (line 24). The first parameter is the sandbox-
internal global object for scripts running in the sandbox whereas the second parameter is a
configuration object16.

The sandbox global object acts as a mediator between the sandbox contents and the
external world (cf. Section 3.3). It is placed on top of the scope chain for code executing
inside the sandbox and it can be used to make outside values available inside the sandbox.
It is wrapped in a proxy membrane to mediate all accesses to the host program.

Next, we instruct the sandbox to load and execute the Datejs library (line 25) inside
the sandbox. Afterwards, the sandbox-internal proxy for JavaScript’s native Date object is
modified in several ways. Among others, the library adds new methods to the Date object
and extends Date.prototype with additional properties. Write operations on a proxy wrapper
produce a shadow value (cf. Section 3.2) that represents the sandbox-internal modification of
an object. Initially, this modification is only visible to reads inside the sandbox. Reads are
forwarded to the target unless there are local modifications, in which case the shadow value
is returned. The return values are wrapped in proxies, again.

A.3 Committing intended modifications

During execution, each sandbox records the effects on all objects that cross the sandbox
membrane17. The sandbox API offers access to the resulting lists for inspection and provides
query methods to select the effects of a particular object. After loading Datejs, the effect
log reports 16 reads and 142 writes on three different objects18. However, as the manual
inspection of effects is impractical and requires a lot of effort, DecentJS allows us to register
rules with a sandbox and apply them automatically. A rule combines a sandbox operation
with a predicate specifying the state under which the operation is allowed to be performed.

For example, as we consider an extension to the Date object as intended, non-critical
modification, we install a rule that automatically commits new properties to the Date object
in Line 26. In general, a rule CommitOn takes a target object (Date) and a predicate. The
predicate function gets invoked with the sandbox object (sbx) and an effect object describing
an effect on the target object. In our example, the predicate checks if the effect is a property

15Appendix A.6 shows the full HTML code.
16Sandbox.DEFAULT is a predefined configuration object for the standard use of the sandbox. It consists

of simple key-value pairs, e.g. verbose:false.
17The lists do not contain effects on values that were created inside of the sandbox.
18Appendix A.7 shows a readout of the effect lists.

22 Transaction-based Sandboxing for JavaScript

write operation extending JavaScript’s native Date object and that the property name is not
already present.

If we construct a function inside of a sandbox and this function is written and committed
to an outside object, then the free variables of the function contain objects inside the sandbox
and arguments of a call to this function are also wrapped. That is, calling this function on
the outside only causes effects inside the sandbox. Furthermore, committing an object in
this way wraps the object in a proxy before writing it to its (outside) target. Both measures
are required to guarantee that the sandbox never gets access to unwrapped references from
the outside world.

At this point we have to mention that the data structure of the committed functions is
constructed inside of sbx. All bound references of those functions still point to objects inside
of the sandbox and thus using them only causes effect inside of the sandbox. Furthermore,
committing an object wraps the object in a proxy before writing it to its target. This
intercepts the use of the committed object, e.g. to wrap the arguments of a committed
function before invoking the function. This is

As an illustration, Figure 9 shows an extract of the membrane arising from JavaScript’s
native Date object in Appendix ??. Executing Datejs in sbx (shown on the left in the first
box) creates a proxy for each element accessed on Date: Date and Date.prototype. Only
Date and Date.prototype are wrapped because proxies are created on demand. As proxies
forward each read to the target the structure visible inside of the sandbox is identical to the
structure visible outside.

Extending the native Date object in sbx yields the state shown in the second box. All
modifications are only visible inside of the sandbox. The new elements are not wrapped
because they only exist inside of the sandbox.

However, a special proxy wraps sandbox internal values whenever committing a value to
the outside, as shown in the last box. This step mediates further uses of the sandbox internal
value, for example, wrapping the this value and all arguments when calling a function defined
in the sandbox. The wrapping guarantees that the sandbox never gets access to unprotected
references to the outside.

A.4 Shadowing DOM operations
The example in Figure 8 omits the inclusion of jQuery for simplification purposes. However,
our initial objective is to sandbox all third-party code to i reason about the modifications done
by loading the third-party code ii prevent the application state from unintended modifications
.

Isolating a library like jQuery is more challenging as it needs access to the browser’s DOM.
Calls to the native DOM interface expose a mixture of public and confidential information,
so the access can neither be fully trusted nor completely forbidden. To address this issue,
DecentJS provides an internal DOM 19 that serves as a shadow for the actual DOM when
running a web library in the sandbox.

Figure 10 demonstrates loading the jQuery library in a web sandbox. As we extend the
first example, we create a new empty sandbox (line 46) and initialize the sandbox internal
DOM by loading an HTML template (line 47). Using the Sandbox.WEB configuration
activates the shadow DOM by instructing the sandbox to create a DOM interface and to
merge this interface with the sandbox-internal global object. The shadow DOM initially

19 See Section 3.5 for a more detailed discussion.

M. Keil and P. Thiemann 23

contains an empty document. It can be instantiated with the actual HTML body or with an
HTML template, as shown in Line 47.

Figure 11 shows the template, which is an extract of the original index.html containing
only the <script> tags for the jQuery library and selected parts of the HTML body. Loading
the template also loads and executes the third-party code inside the sandbox. Afterwards,
the internal effect log reports two write operations to the fields $ and jQuery of the global
window object, and one write operation to the HTMLBodyElement interface, a child of Node,
both of which are part of the DOM interface.

To automatically commit intended modifications to the global window object, we install a
suitable rule in Lines 48 and 49. As jQuery has been instantiated w.r.t. the sandbox internal
DOM, using it modifies the sandbox internal DOM instead of the browser’s DOM. These
modifications must be committed to the browser’s DOM to become visible (line 57).

Alternatively, DecentJS allows us to grant access to the browser’s DOM by white listing
the window and document objects. However, white listing can only expose entire objects and
cannot restrict access to certain parts of the document model.

A.5 Using transactions
For wrapped objects, DecentJS supports a commit/rollback mechanism. In the first examples
(Figure 8), we prevent the application state from unintended modification when loading
untrusted code and commit only intended ones.

However, Datejs and jquery.formatDateTime.js might both modify JavaScript’s native
Date object. To avoid undesired overwrites, DecentJS allows us to inspect the effects of both
libraries and to check for conflicts before committing to Date. The predicate in Line 81
checks for conflicts, which arise in the comparison between different sandboxes. A conflict is
flagged if at least one sandbox modifies a value that is accessed by the other sandbox later
on20.

Furthermore, we prescribe that in case of conflicts the methods from Datejs should be
used. To this end, a second rule discards the modifications on Date from the second sandbox
when detecting conflicts. The rollback operation undoes an existing manipulation and returns
to its previous configuration. Such a partial rollback does not result in an inconsistent state
as we do not delete objects and the references inside the sandbox remain unchanged.

A.6 Full HTML Example
Figure 13 shows the full html code from the example in Section A.

A.7 Effects Lists
This sections shows the resulting effect logs recorded by the sandboxes in Section A. See
Appendix ?? for a detailed explanation of the output.

A.8 Effects of sbx

A.8.1 All Read Effects on this

20 We consider only Read-After-Write and Write-After-Write conflicts. Write-after-Read conflicts are not
handled because the hazard represents a problem that only occurs in concurrent executions.

24 Transaction-based Sandboxing for JavaScript

131 sbx.readeffectOn(this).forEach(function(e) {
132 print(e);
133 });

134 (#0) has [name=Date]
135 (#0) get [name=Date]
136 (#0) has [name=Number]
137 (#0) get [name=Number]
138 (#0) has [name=RegExp]
139 (#0) get [name=RegExp]
140 (#0) has [name=Array]
141 (#0) get [name=Array]

A.8.2 All Write Effects on this

142 sbx.writeeffectOn(this).forEach(function(e) {
143 print(e);
144 });

145 none

A.8.3 All Read Effects on Date

146 sbx.readeffectOn(Date).forEach(function(e) {
147 print(e);
148 });

149 (#1) get [name=prototype]
150 (#1) get [name=Parsing]
151 (#1) get [name=Grammar]
152 (#1) get [name=Translator]
153 (#1) get [name=CultureInfo]
154 (#1) get [name=parse]

A.8.4 All Write Effects on Date

155 sbx.writeeffectOn(Date).forEach(function(e) {
156 print(e);
157 });

158 (#1) set [name=CultureInfo]
159 (#1) set [name=getMonthNumberFromName]
160 (#1) set [name=getDayNumberFromName]
161 (#1) set [name=isLeapYear]
162 (#1) set [name=getDaysInMonth]
163 (#1) set [name=getTimezoneOffset]
164 (#1) set [name=getTimezoneAbbreviation]
165 (#1) set [name=_validate]
166 (#1) set [name=validateMillisecond]
167 (#1) set [name=validateSecond]
168 (#1) set [name=validateMinute]

M. Keil and P. Thiemann 25

169 (#1) set [name=validateHour]
170 (#1) set [name=validateDay]
171 (#1) set [name=validateMonth]
172 (#1) set [name=validateYear]
173 (#1) set [name=now]
174 (#1) set [name=today]
175 (#1) set [name=Parsing]
176 (#1) set [name=Grammar]
177 (#1) set [name=Translator]
178 (#1) set [name=_parse]
179 (#1) set [name=parse]
180 (#1) set [name=getParseFunction]
181 (#1) set [name=parseExact]

A.8.5 All Read Effects on Date.prototype

182 sbx.readeffectOn(Date.prototype).forEach(function(e) {
183 print(e);
184 });

185 (#2) get [name=toString]

A.8.6 All Write Effects on Date.prototype

186 sbx.writeeffectOn(Date.prototype).forEach(function(e) {
187 print(e);
188 });

189 (#2) set [name=clone]
190 (#2) set [name=compareTo]
191 (#2) set [name=equals]
192 (#2) set [name=between]
193 (#2) set [name=addMilliseconds]
194 (#2) set [name=addSeconds]
195 (#2) set [name=addMinutes]
196 (#2) set [name=addHours]
197 (#2) set [name=addDays]
198 (#2) set [name=addWeeks]
199 (#2) set [name=addMonths]
200 (#2) set [name=addYears]
201 (#2) set [name=add]
202 (#2) set [name=set]
203 (#2) set [name=clearTime]
204 (#2) set [name=isLeapYear]
205 (#2) set [name=isWeekday]
206 (#2) set [name=getDaysInMonth]
207 (#2) set [name=moveToFirstDayOfMonth]
208 (#2) set [name=moveToLastDayOfMonth]
209 (#2) set [name=moveToDayOfWeek]
210 (#2) set [name=moveToMonth]

26 Transaction-based Sandboxing for JavaScript

211 (#2) set [name=getDayOfYear]
212 (#2) set [name=getWeekOfYear]
213 (#2) set [name=isDST]
214 (#2) set [name=getTimezone]
215 (#2) set [name=setTimezoneOffset]
216 (#2) set [name=setTimezone]
217 (#2) set [name=getUTCOffset]
218 (#2) set [name=getDayName]
219 (#2) set [name=getMonthName]
220 (#2) set [name=_toString]
221 (#2) set [name=toString]
222 (#2) set [name=_orient]
223 (#2) set [name=next]
224 (#2) set [name=previous]
225 (#2) set [name=prev]
226 (#2) set [name=last]
227 (#2) set [name=_is]
228 (#2) set [name=is]
229 (#2) set [name=sun]
230 (#2) set [name=sunday]
231 (#2) set [name=mon]
232 (#2) set [name=monday]
233 (#2) set [name=tue]
234 (#2) set [name=tuesday]
235 (#2) set [name=wed]
236 (#2) set [name=wednesday]
237 (#2) set [name=thu]
238 (#2) set [name=thursday]
239 (#2) set [name=fri]
240 (#2) set [name=friday]
241 (#2) set [name=sat]
242 (#2) set [name=saturday]
243 (#2) set [name=jan]
244 (#2) set [name=january]
245 (#2) set [name=feb]
246 (#2) set [name=february]
247 (#2) set [name=mar]
248 (#2) set [name=march]
249 (#2) set [name=apr]
250 (#2) set [name=april]
251 (#2) set [name=may]
252 (#2) set [name=jun]
253 (#2) set [name=june]
254 (#2) set [name=jul]
255 (#2) set [name=july]
256 (#2) set [name=aug]
257 (#2) set [name=august]
258 (#2) set [name=sep]

M. Keil and P. Thiemann 27

259 (#2) set [name=september]
260 (#2) set [name=oct]
261 (#2) set [name=october]
262 (#2) set [name=nov]
263 (#2) set [name=november]
264 (#2) set [name=dec]
265 (#2) set [name=december]
266 (#2) set [name=milliseconds]
267 (#2) set [name=millisecond]
268 (#2) set [name=seconds]
269 (#2) set [name=second]
270 (#2) set [name=minutes]
271 (#2) set [name=minute]
272 (#2) set [name=hours]
273 (#2) set [name=hour]
274 (#2) set [name=days]
275 (#2) set [name=day]
276 (#2) set [name=weeks]
277 (#2) set [name=week]
278 (#2) set [name=months]
279 (#2) set [name=month]
280 (#2) set [name=years]
281 (#2) set [name=year]
282 (#2) set [name=toJSONString]
283 (#2) set [name=toShortDateString]
284 (#2) set [name=toLongDateString]
285 (#2) set [name=toShortTimeString]
286 (#2) set [name=toLongTimeString]
287 (#2) set [name=getOrdinal]

A.9 Effects of sbx2
A.9.1 All Read Effects on this

288 sbx2.readeffectOn(this).forEach(function(e) {
289 print(e);
290 });

291 (#0) has [name=window]
292 (#0) get [name=window]
293 (#0) has [name=module]
294 (#0) get [name=module]
295 (#0) has [name=Math]
296 (#0) get [name=Math]
297 (#0) has [name=Array]
298 (#0) get [name=Array]
299 (#0) has [name=Date]
300 (#0) get [name=Date]
301 (#0) has [name=undefined]
302 (#0) get [name=undefined]

28 Transaction-based Sandboxing for JavaScript

303 (#0) has [name=Symbol]
304 (#0) get [name=Symbol]
305 (#0) has [name=RegExp]
306 (#0) get [name=RegExp]
307 (#0) has [name=String]
308 (#0) get [name=String]
309 (#0) has [name=define]
310 (#0) get [name=define]

A.9.2 All Write Effects on this

311 sbxs.writeeffectOn(this).forEach(function(e) {
312 print(e);
313 });

314 none

A.9.3 All Read Effects on window

315 sbx2.readeffectOn(window).forEach(function(e) {
316 print(e);
317 });

318 (#1) get [name=window]
319 (#1) getOwnPropertyDescriptor [name=window]
320 (#1) getOwnPropertyDescriptor [name=module]
321 (#1) get [name=document]
322 (#1) getOwnPropertyDescriptor [name=Math]
323 (#1) getOwnPropertyDescriptor [name=Array]
324 (#1) getOwnPropertyDescriptor [name=Date]
325 (#1) getOwnPropertyDescriptor [name=undefined]
326 (#1) getOwnPropertyDescriptor [name=Symbol]
327 (#1) getOwnPropertyDescriptor [name=RegExp]
328 (#1) get [name=top]
329 (#1) get [name=setTimeout]
330 (#1) has [name=onfocusin]
331 (#1) get [name=location]
332 (#1) getOwnPropertyDescriptor [name=String]
333 (#1) get [name=XMLHttpRequest]
334 (#1) getOwnPropertyDescriptor [name=define]
335 (#1) get [name=jQuery]
336 (#1) get [name=$]

A.9.4 All Write Effects on window

337 sbx.writeeffectOn(window).forEach(function(e) {
338 print(e);
339 });

340 (#1) set [name=$]
341 (#1) set [name=jQuery]

M. Keil and P. Thiemann 29

Date

· · · now() prototype

toString() · · ·

Date

now() prototype

toString() isWeekday()

Date

· · · now() prototype

toString() · · ·

Date

now() prototype

toString() isWeekday()

Date

· · · now() prototype

toString() · · ·

Date

now() prototype

toString() isWeekday()

Figure 9 Shadow objects in the sandbox when loading Datejs (cf. Section ??). The structure of
JavaScrip’s native Date object is shown in solid lines on the left. The shadow values are enclosed by
a dashed line. Solid lines are direct references to non-proxy objects, whereas dashed lines are indirect
references and proxy objects. Dotted lines connect to the target object. The first box shows the
sandbox after reading Date.prototype whereas the second box shows the sandbox after modifying the
structure of Date. The third box shows the situation after committing the modifications on Date.

30 Transaction-based Sandboxing for JavaScript

38 <!DOCTYPE html>
39 <html lang="en">
40 <head>
41 <!−− DecentJS code−−>
42 <script src="decent.js"></script>
43 <!−− ... −−>
44 <!−− Runs jQuery in a fresh sandbox. −−>
45 <script type="text/javascript">
46 var sbx2 = new Sandbox(this, Sandbox.WEB);
47 sbx2.initialize("template.html");
48 sbx2.applyRule(new Rule.Commit(this, "jQuery"));
49 sbx2.applyRule(new Rule.Commit(this, "$"));
50 </script>
51 </head>
52 <body>
53 <!−− Body of the page −−>
54 <h1 id="headline">Headline</h1>
55 <script type="text/javascript">
56 window.$("#headline").text("Changed Headline");
57 document.getElementById("headline").innerHTML=sbx2.dom.document.

getElementById("headline").innerHTML;
58 </script>
59 </body>
60 </html>

Figure 10 Execution of a web library in a sandbox. The first <script> tag loads the sandbox
implementation. The body of the second <script> tag instantiates a new sandbox and initializes
the sandbox with a predefined HTML template (see Figure 11). Later it commits intended effects to
the application state and copies data from the sandbox internal DOM.

61 <!DOCTYPE html>
62 <html lang="en">
63 <head>
64 <script src="jquery.js"></script>
65 <script src="jquery.formatDateTime.js"></script>
66 </head>
67 <body>
68 <!−− Body of the page −−>
69 <h1 id="headline">Headline</h1>
70 </body>
71 </html>

Figure 11 File template.html contains the <script> tags for loading the jQuery code from
index.html in Figure 7.

M. Keil and P. Thiemann 31

72 <!DOCTYPE html>
73 <html lang="en">
74 <head>
75 <!−− ... −−>
76 <!−− Checks for conflicts with Datejs −−>
77 <script type="text/javascript">
78 sbx2.applyRule(
79 new Rule.Commit(Date, function(sbx, effect) {
80 return !sbx.inConflictWith(sbx2, Date);
81 });
82 sbx2.applyRule(
83 new Rule.RollbackOn(Date, function(sbx, effect) {
84 return sbx.inConflictWith(sbx2, Date);
85 });
86 </script>
87 </head>
88 <body">
89 <!−− ... −−>
90 </body>
91 </html>

Figure 12 Checking for conflicts. The HTML code first checks for conflicts between Datejs and
jQuery before it commits the modification of the library or rolls back.

32 Transaction-based Sandboxing for JavaScript

92 <!DOCTYPE html>
93 <html lang="en">
94 <head>
95 <!−− DecentJS code−−>
96 <script src="decent.js"></script>
97 <!−− Runs Datejs in a fresh sandbox. −−>
98 <script type="text/javascript">
99 var sbx = new Sandbox(this, Sandbox.DEFAULT);

100 sbx.request("datejs.js");
101 sbx.applyRule(new Rule.CommitOn(Date, function(sbx, effect) {
102 return (effect instanceof Effect.Set) && !(effect.name in Date);
103 }));
104 </script>
105 <!−− Runs jQuery in a fresh sandbox. −−>
106 <script type="text/javascript">
107 var sbx2 = new Sandbox(this, Sandbox.WEB);
108 sbx2.initialize("template.html");
109 sbx2.applyRule(new Rule.Commit(this, "jQuery"));
110 sbx2.applyRule(new Rule.Commit(this, "$"));
111 </script>
112 <!−− Checks for conflicts with Datejs −−>
113 <script type="text/javascript">
114 sbx2.applyRule(new Rule.Commit(Date, function(sbx, effect) {
115 return !sbx.inConflictWith(sbx2, Date);
116 });
117 sbx2.applyRule(new Rule.RollbackOn(Date, function(sbx, effect) {
118 return sbx.inConflictWith(sbx2, Date);
119 });
120 </script>
121 </head>
122 <body>
123 <!−− Body of the page −−>
124 <h1 id="headline">Headline</h1>
125 <script type="text/javascript">
126 window.$("#headline").text("Changed Headline");
127 document.getElementById("headline").innerHTML=sbx2.dom.document.

getElementById("headline").innerHTML;
128 </script>
129 </body>
130 </html>

Figure 13 Execution of library code in a sandbox (cf. Section A in the paper). The first <script>
tag loads the sandbox implementation. The second <script> tag instantiates a new sandbox sbx
and loads and executes Datejs inside the sandbox. Later it commits intended effects to the native
Date object. The third <script> tag instantiates sandbox sbx2 and initializes the sandbox with a
predefined HTML template (see Figure 11 in the paper). Later it commits intended modifications to
the application state. The last <script> tag checks for conflicts between Datejs and jQuery before
it commits further modification on Date or rolls back. The <script> tag included in the body
performs a modification of the sandbox internal DOM and copies the changes to the global DOM,

M. Keil and P. Thiemann 33

B Application Scenarios

This section considers some example scenarios that use the implemented system. All
examples are drawn from other projects and use this work’s sandboxing mechanism to
guarantee noninterference.

B.1 TreatJS
TreatJS [20] is a higher-order contract system for JavaScript which enforces contracts by
run-time monitoring. TreatJS is implemented as a library so that all aspects of a contract
can be specified using the full JavaScript language.

For example, the base contract typeNumber checks its argument to be a number.

1 var typeNumber = Contract.Base(function (arg) {
2 return (typeof arg) === ’number’;
3 });

Asserting a base contracts to a value causes the predicate to be checked by applying the
predicate to the value. In JavaScript, any function can be used as any return value can be
converted to boolean21.

4 Contract.assert(1, typeNumber); // accepted

TreatJS relies on the sandbox presented in this work to guarantee that the execution of
contract code does not interfere with the contract abiding execution of the host program.

As read-only access to objects and functions is safe and useful in many contracts, TreatJS
facilitates making external references visible inside of the sandbox.

For example, the isArray contract below references the global object Array.

5 var isArray = Contract.With({Array:Array}, Contract.Base(function (arg) {
6 return (arg instanceof Array);
7 }));

However, TreatJS forbids all write accesses and traps the unintended write to the global
variable type in the following code.

8 var typeNumberBroken = Contract.Base(function(arg) {
9 type = (typeof arg);

10 return type === ’number’;
11 });

B.2 TreatJS Online
TreatJS-Online22 [22] is a web frontend for experimentation with the TreatJS contract
system [20]. It enables the user to enter code fragments that run in combination with the
TreatJS code. All aspects of TreatJS are accessible to the user code. However, the user code
should neither be able to compromise the contract system nor the website’s functioning
by writing to the browser’s document or window objects. Without any precaution, a code
snippet like

21 JavaScript programmers speak of truthy or falsy about values that convert to true or false.
22 http://www2.informatik.uni-freiburg.de/~keilr/treatjs/

http://www2.informatik.uni-freiburg.de/~keilr/treatjs/

34 Transaction-based Sandboxing for JavaScript

1 function Observer(target, handler) {
2 var sbx = new Sandbox({}, {/∗ parameters omitted ∗/});
3 var controller = {
4 get: function(target, name, receiver) {
5 var trap = handler.get;
6 var result = trap && sbx.call(trap, target, name, receiver);
7 var raw = target[name];
8 return observerOf(raw, result) ? result : raw;
9 }};

10 return new Proxy(target, controller);
11 }

Figure 14 Implementation of an observer proxy (excerpt). The get trap evaluates the user specific
trap in a sandbox to guarantee noninterference. Afterwards it performs the usual operation and
compares the outcomes of both executions. Other traps can be implemented in the same way.

1 Contract.assert = function(arg) {
2 return arg;
3 }

could change the Contract objects to influence subsequent executions,
To avoid these issues, the website creates a fresh sandbox environment, builds a function

closure with the user’s input, and executes the user code in the sandbox. The sandbox
grants read-only access to the TreatJS API and to JavaScript’s built-in objects like Object,
Function, Array, and so on, but it does not provide access to browser objects like document
and window. Further, each new invocation reverts the sandbox to its initial state.

B.3 Observer Proxies
An observer proxy23 is a restricted version of a JavaScript proxy that cannot change the
behavior of the proxy’s target arbitrarily. It implements a projection in that it either
implements the same behavior as the target object or it raises an exception. A similar feature
is provided by Racket’s chaperones [37].

Such an observer can cause a program to fail more often, but in case it does not fail it
would behave in the same way as if not observer were present.

Figure 14 contains the getter part of the JavaScript implementation of Observer, the
constructor of an observer proxy. It accepts the same arguments as the constructor of a
normal proxy object. It returns a proxy, but interposes a different handler, controller, that
wraps the execution of all user provided traps in a sandbox.

The controller’s get trap evaluates the user’s get trap (if one exists) in a sandbox. Next,
it performs a normal property access on the target value to produce the same side effects and
to obtain a baseline value to compare the results. observerOf checks whether the sandboxed
result is suitably related to the baseline value.

23This observer proxy in this Subsection should not be confused with the observer proxy mention in the
paper. The observer mentions in Section 3.5 is a normal proxy implementing a membrane.

M. Keil and P. Thiemann 35

Constant 3 c
Variable 3 x, y
Expression 3 e, f, g ::= c | x | op(e, f) | λx.e | e(f)

| new e | e[f] | e[f] = g

Figure 15 Syntax of λJ .

Value 3 u, v, w ::= c | l

Closure 3 f ::= − | (ρ, λx.e)
Dictionary 3 d ::= ∅ | d[c 7→ v]
Object 3 o ::= (d, f, v)

Environment 3 ρ ::= ∅ | ρ[x 7→ v]
Store 3 σ ::= ∅ | σ[l 7→ o]

Figure 16 Semantic domains of λJ .

C Semantics of Sandboxing

This section first introduces λJ , an untyped call-by-value lambda calculus with objects and
object proxies that serves as a core calculus for JavaScript, inspired by previous work [13, 21].
It defines its syntax and describes its semantics informally. Later on we extends λJ to a new
calculus λSBX

J , which adds a sandbox to the core calculus.

C.1 Core Syntax of λJ

Figure 15 defines the syntax of λJ . A λJ expression is either a constant, a variable, an
operation on primitive values, a lambds abstraction, an application, a creation of an empty
object, a property read, or a property assignment. Variables x, y are drawn from denumerable
sets of symbols and constants c include JavaScript’s primitive values like numbers, strings,
booleans, as well as undefined and null.

The syntax do not make proxies available to the user, but offers an internal method to
wrap objects.

Sandbox 3 S ::= Λx.e

Expression 3 e, f, g ::= · · · | S | fresh e
Term 3 t ::= · · · | fresh S | wrap(v)

Object 3 o ::= · · · | (l, l̂, ρ̂)
Values 3 u, v, w ::= · · · | (ρ̂,S)

Figure 17 Extensions of λSBX
J .

36 Transaction-based Sandboxing for JavaScript

Term 3 t ::= e

| op(v, f) | op(v, w) | l(f) | l(v) | new v

| l[f] | l[c] | l[f] = g | l[c] = g | l[c] = w

Figure 18 Intermediate terms of λJ .

C.2 Semantic Domains
Figure 16 defines the semantic domains of λJ .

Its main component is a store that maps a location l to an object o, which is a native
object (non-proxy object) represented by a triple consisting of a dictionary d, a potential
function closure f , and a value v acting as prototype. A dictionary d models the properties
of an object. It maps a constant c to a value v. An object may be a function in which case
its closure consists of a lambda expression λx.e and an environment ρ that binds the free
variables. It maps a variable x to a value v. A non-function object is indicated by − in this
place.

A value v is either a constant c or a location l.

C.3 Evaluation of λJ

A pretty-big-step semantics [4] introduces intermediate terms to model partially evaluated
expressions (Figure 18). An intermediate term is thus an expression where zero or more
top-level subexpressions are replaced by their outcomes.

The evaluation judgment is similar to a standard big-step evaluation judgment except
that its input ranges over intermediate terms: It states that evaluation of term t with initial
store σ, and environment ρ results in a final store σ′ and value v.

ρ ` 〈σ, t〉 ⇓ 〈σ′, v〉

Figure 19 defines the standard evaluation rules for expressions e in λJ . The inference rules
for expressions e are mostly standard. Each rule for a composite expression evaluates exactly
one subexpression and then recursively invokes the evaluation judgment to continue. Once
all subexpressions are evaluated, the respective rule performs the desired operation.

C.4 Sandboxing of λJ

This section extends the base calculus λJ to a calculus λSBX
J which adds sandboxing of

function expressions. The calculus describes only the core features that illustrates the
principles of our sandbox. Further features of the application level can be implemented in
top of the calculus.

Figure 17 defines the syntax and semantics of λSBX
J as an extension of λJ . Expressions

now contain a sandbox abstraction S and a sandbox construction fresh e that instantiates a
fresh sandbox.

Terms are extended with a fresh S term. A new internal wrap(v) term, which did not
occour in source programs, wraps a value in a sandbox environment.

Objects now contain object proxies. A proxy object is a single location controlled by a
proxy handler that mediates the access to the target location. For simplification, we represent
handler objects by there meta-data. So, each handler is an sandbox handler that enforces
write-protection (viz. by an secure location l̂ that acts as an shadow object for the proxies
target object l and a single secure environment ρ̂).

M. Keil and P. Thiemann 37

Const
ρ ` σ, c ⇓ σ, c

Var
ρ ` σ, x ⇓ σ, ρ(x)

Op-E
ρ ` σ, e ⇓ σ′, v

ρ ` σ′, op(v, f) ⇓ σ′′, w

ρ ` σ, op(e, f) ⇓ σ′′, w

Op-F
ρ ` σ, f ⇓ σ′, u

ρ ` σ′, op(v, u) ⇓ σ′′, w

ρ ` σ, op(v, f) ⇓ σ′′, w

Op
w = op(v, u)

ρ ` σ, op(v, u) ⇓ σ,w

Abs
l /∈ dom(σ) σ′ = σ[l 7→ (∅, (ρ, λx.e),null)]

ρ ` σ, λx.e ⇓ σ′, l

App-E
ρ ` σ, e ⇓ σ′, l

ρ ` σ′, l(f) ⇓ σ′′, w

ρ ` σ, e(f) ⇓ σ′′, w

App-F
ρ ` σ, f ⇓ σ′, v

ρ ` σ′, l(v) ⇓ σ′′, w

ρ ` σ, l(f) ⇓ σ′′, w

App
(d, (ρ′, λx.e), u) = σ(l) ρ′[x 7→ v] ` σ, e ⇓ σ′, w

ρ ` σ, l(v) ⇓ σ′, w

New-E
ρ ` σ, e ⇓ σ′, v

ρ ` σ′,new v ⇓ σ′′, w

ρ ` σ,new e ⇓ σ′′, w

New
l /∈ dom(σ) σ′ = σ[l 7→ (∅,−, v)]

ρ ` σ,new v ⇓ σ′, l

Get-E
ρ ` σ, e ⇓ σ′, l

ρ ` σ′, l[f] ⇓ σ′′, w

ρ ` σ, e[f] ⇓ σ′′, w

Get-F
ρ ` σ, f ⇓ σ′, c

ρ ` σ′, l[c] ⇓ σ′′, w

ρ ` σ, l[f] ⇓ σ′′, w

Get
(d, f, v) = σ(l) c ∈ dom(d)

ρ ` σ, l[c] ⇓ σ, d(c)

Get-Proto
(d, f, l′) = σ(l) c /∈ dom(d)

ρ ` σ, l′[c] ⇓ σ, v

ρ ` σ, l[c] ⇓ σ, v

Get-Undef
(d, f, c′) = σ(l) c /∈ dom(d)
ρ ` σ, l[c] ⇓ σ, undefined

Put-E
ρ ` σ, e ⇓ σ′, l

ρ ` σ′, l[f] = g ⇓ σ′′, w

ρ ` σ, e[f] = g ⇓ σ′′, w

Put-F
ρ ` σ, f ⇓ σ′, c

ρ ` σ′, l[c] = g ⇓ σ′′, w

ρ ` σ, l[f]=g ⇓ σ′′, w

Put-G
ρ ` σ, g ⇓ σ′, v

ρ ` σ′, l[c] = v ⇓ σ′′, w

ρ ` σ, l[c] = g ⇓ σ′′, w

Put
(d, f, u) = σ(l) σ′ = σ[l 7→ (d[c 7→ v], f, u)]

ρ ` σ, l[c] = v ⇓ σ′, v

Figure 19 Inference rules for intermediate terms of λJ .

38 Transaction-based Sandboxing for JavaScript

Sandbox-Fresh-E
ρ ` σ, e ⇓ σ′,Λx.f

ρ ` σ′, fresh Λx.f ⇓ σ′′, v

ρ ` σ, fresh e ⇓ σ′′, v

Sandbox-Fresh
∅ ` σ,Λx.e ⇓ σ, (ρ̂,Λx.e)

ρ ` σ, fresh Λx.e ⇓ σ, (ρ̂,Λx.e)

Sandbox-Abstraction
ρ̂ ` σ,Λx.e ⇓ σ, (ρ̂,Λx.e)

Sandbox-Application
ρ̂ ` σ,wrap(v) ⇓ σ′, v̂

ρ̂[x 7→ v̂] ` σ′, e ⇓ σ′′, ŵ

ρ ` σ, (ρ̂,Λx.e)(v) ⇓ σ′′, ŵ

Figure 20 Sandbox abstraction and application rules of λSBX
J .

For clarity, we write v̂, û, ŵ for wrapped values that are imported into a sandbox, ρ̂ for a
sandbox environment that only contains wrapped values, and l̂ for locations of proxies and
shadow objects.

Consequently, values are extended with sandboxes which represents an sandbox expression
wrapped in a sandbox environment that is to be executed when the value is used in an
application.

C.4.1 Evaluation of λSBX
J

Figure 20 contains its inference rules for sandbox abstraction and sandbox application of
λSBX
J . The formalization employs pretty-big-step semantics [4] to model side effects while

keeping the number of evaluation rules manageable.
The rule for expression fresh e (Rule Sandbox-Fresh-E) evaluates the subexpression and

invokes the evaluation judgment to continue. The other rules show the last step in a pretty
big step evaluation. Once all subexpressions are evaluated, the respective rule performs the
desired operation.

Sandbox execution happens in the context of a secure sandbox environment to preserve
noninterference. So a sandbox definition (abstraction) will evaluate to a sandbox closure
containing the sandbox expression (the abstraction) together with an empty environment
(Rule Sandbox-Fresh). Each sandbox executions starts from a fresh environment. This
guarantees that not unwrapped values are reachable by the sandbox.

Sandbox abstraction (Rule Sandbox-Abstraction) proceeds only on secure environments,
which is either an empty set or an environment that contains only secure (wrapped) values.

Sandbox execution (Rule Sandbox-Application) applies after the first expression evaluates
to a sandbox closure and the second expression evaluates to a value. It wraps the given value
and triggers the evaluation of expressions e in the sandbox environment ρ̂ after binding the
wrapped value v̂. Value v̂ acts as the global object of the sandbox. It can be used to make
values visible inside ob the sandbox.

C.4.2 Sandbox Encapsulation
The sandbox encapsulation (Figure 21) distinguishes several cases. A primitive value and a
sandbox closure is not wrapped.

To wrap a location that points to a non-proxy object, the location is packed in a fresh
proxy along with a fresh shadow object and the current sandbox environment. This packaging
ensures that each further access to the wrapped location has to use the current environment.

M. Keil and P. Thiemann 39

Wrap-Const
ρ̂ ` σ,wrap(c) ⇓ σ, c

Wrap-Sandbox
ρ̂ ` σ,wrap((ρ̂′,S)) ⇓ σ, (ρ̂′,S)

Wrap-NonProxyObject
6 ∃l′ ∈ dom(σ) : (l, l̂, ρ̂) = σ(l′)
ρ̂ ` σ, compile(l) ⇓ σ′, l̂

l̂′ 6∈ dom(σ′) σ′′ = σ′[l̂′ 7→ (l, l̂, ρ̂)]
ρ̂ ` σ,wrap(l) ⇓ σ′′, l̂′

Wrap-Existing
ρ̂ ` σ[l̂ 7→ (l, l̂′, ρ̂)],wrap(l) ⇓ σ, l̂

Wrap-ProxyObject
ρ̂ ` σ[l̂ 7→ (l, l̂′, ρ̂)],wrap(l̂) ⇓ σ, l̂

Figure 21 Inference rules for sandbox encapsulation.

Recompile-NonFunctionObject
l̂ 6∈ dom(σ) σ′ = σ[l̂ 7→ (∅,−,null)]
ρ̂ ` σ[l 7→ (d,−, v)], compile(l) ⇓ σ, l̂

Recompile-FunctionObject
6 ∃l̂ ∈ dom(σ) : (d, (ρ̂, λx.e), v) = σ(l̂)

l̂ 6∈ dom(σ) σ′ = σ[l̂ 7→ (∅, (ρ̂, λx.e),null)]
ρ̂ ` σ[l 7→ (d, (ρ, λx.e), v)], compile(l) ⇓ σ, l̂

Recompile-Existing
ρ̂ ` σ[l̂ 7→ (d, (ρ̂, λx.e), v)], compile(l̂) ⇓ σ, l̂

Recompile-ProxyObject
ρ̂ ` σ[l 7→ (l′, l̂, ρ̂)], compile(l′) ⇓ σ, l̂

ρ̂ ` σ[l 7→ (l′, l̂, ρ̂)], compile(l) ⇓ σ, l̂

Figure 22 Inference rules for object re-compilation.

In case the location is already wrapped by a sandbox proxy or the location of a sandbox
proxy gets wrapped then the location to the existing proxy is returned. This rule ensures
that an object is wrapped at most once and thus preserves object identity inside the sandbox.

The shadow object is build from recompiling (Figure 22) the target object. A shadow
objects is a new empty object that may carry a sandboxed replication of its closure part.

For a non-function object, recompiling returns an empty object that later on acts as a
sink for property assignments on the wrapped objects.

For a function object, recompiling extracts the function body from the closure and
redefines the body with respect to the current sandbox environment. The new closure is
put into a new empty object. This step erases all external bindings of function closure and
ensures that the application of a wrapped function happens in the context of the secure
sandbox environment.

In case the function is already recompiled, function recompilation returns the existing
replication.

C.4.3 Application, Read, and Assignment
Function application, property read, and property assignment distinguish two cases: either
the operation applies directly to a non-proxy object or it applies to a proxy. If the target of
the operation is not a proxy object, then the usual rules apply.

Figure 23 contains the inference rules for function application and property access for the

40 Transaction-based Sandboxing for JavaScript

App-Sandbox
ρ̂ ` σ,wrap(v) ⇓ σ′, v̂

ρ ` σ′, l̂(v̂) ⇓ σ′′, ŵ

ρ ` σ[l 7→ (l′, l̂, ρ̂)], l(v) ⇓ σ′′, ŵ

Get-Shadow
c ∈ dom(l̂) ρ ` σ[l 7→ (l′, l̂, ρ̂)], l̂[c] ⇓ σ′, v̂

ρ ` σ[l 7→ (l′, l̂, ρ̂)], l[c] ⇓ σ′, v̂

Get-Sandbox
c 6∈ dom(l̂) ρ ` σ[l 7→ (l′, l̂, ρ̂)], l′[c] ⇓ σ′, v

ρ̂ ` σ′,wrap(v) ⇓ σ′′, v̂

ρ ` σ[l 7→ (l′, l̂, ρ̂)], l[c] ⇓ σ′′, v̂

Put-Sandbox
ρ ` σ[l 7→ (l′, l̂, ρ̂)], l̂[c] = v ⇓ σ′, v

ρ ` σ[l 7→ (l′, l̂, ρ̂)], l[c] = v ⇓ σ′, v

Figure 23 Inference rules for function application, property read, and property assignment.

non-standard cases.
The application of a wrapped function proceeds by unwrapping the function and evaluating

it in the sandbox environment contained in the proxy. The function argument and its result
are known to be wrapped in this case.

A property read on a wrapped object has two cases depending on if the accessed property
has been written in the sandbox before, or not. The notation c ∈ dom(l) is defined as an
shortcut of a dictionary lookup c ∈ dom(d) with σ(l) = (d, f, v).

A property read of an affected field reads the property from the shadow location. Other-
wise, it continues the operation on the target and wraps the resulting value. An assignment
to a wrapped object is continues with the operation on the shadow location l̂.

In JavaScript, write operations do only change properties of the object’s dictionary.
They do not affect the object’s prototype. Therefor, the shadow object did not contain any
prototype informations. It acts only a shadow that absorbs write operations.

M. Keil and P. Thiemann 41

D Technical Results

As JavaScript is a memory safe programming language, a reference can be seen as the
right ti modify the underlying object. If an expressions body can be shown not to contain
unprotected references to objects, then it cannot modify this data.

To prove soundness of our sandbox we show termination insensitive noninterference. It
requires to show that the initial store σ of a sandbox application is observational equivalent
to the final store σ′, that remains after the application. In detail, the sandbox application
may introduce new objects or even write to shadow objects (only reachable inside of the
sandbox) but every value reachable from the outside remains unmodified.

As the calculus in Appendix C did not support variable updates on environments ρ the
only way to make changes persistent is to modify objects. Thus, proving noninterference
relates different stores and looks for differences in the store with respect to all reachable
values.

D.1 Observational Equivalence on Stores
First, we introduce an equivalence relation on stores with respect to other semantic elements.

I Definition 1. Two stores σ, σ′ are equivalent w.r.t constants c, c′ if the constants are
equal.

(σ, c) ' (σ′, c′)⇔ c = c

I Definition 2. Two stores σ, σ′ are equivalent w.r.t locations l, l′ if they are equivalent on
the location’s target.

(σ, l) ' (σ′, l′)⇔ (σ, σ(l)) ' (σ′, σ′(l′))

I Definition 3. Two stores σ, σ′ are equivalent w.r.t non-proxy objects (d, f, v), (d′, f ′, v′)
if they are equivalent on the objects’s constituents.

(σ, (d, f, v)) ' (σ′, (d′, f ′, v′))⇔

(σ, d) ' (σ′, d′) ∧ (σ, f) ' (σ′, f ′) ∧ (σ, v) ' (σ′, v′)

I Definition 4. Two stores σ, σ′ are equivalent w.r.t dictionaries d, d′ if they are equivalent
on the dictionary’s content.

(σ, d) ' (σ′, d′)⇔

dom(d) = dom(d′) ∧ ∀c ∈ dom(d).(σ, d(c)) ' (σ′, d′(c))

I Definition 5. Two stores σ, σ′ are equivalent w.r.t closures (ρ, λx.e), (ρ′, λx.f) if the are
equivalent on the closure’s environment and both abstractions are equal.

(σ, (ρ, λx.e)) ' (σ′, (ρ′, λx.f))⇔

(σ, ρ) ' (σ′, ρ′) ∧ λx.e = λx.f

I Definition 6. Two stores σ, σ′ are equivalent w.r.t environments ρ, ρ′ if the are equivalent
on the environment’s content.

(σ, ρ) ' (σ′, ρ′)⇔

dom(ρ) = dom(ρ′) ∧ ∀x ∈ dom(ρ).(σ, ρ(x)) ' (σ′, ρ(x))

42 Transaction-based Sandboxing for JavaScript

I Definition 7. Two stores σ, σ′ are equivalent w.r.t proxy objects (l, l̂, ρ̂), (l′, l̂′, ρ̂′) if they
are equivalent on the objects’s constituents.

(σ, (l, l̂, ρ̂)) ' (σ′, (l′, l̂′, ρ̂′))⇔

(σ, l) ' (σ′, l′) ∧ (σ, l̂) ' (σ′, l̂′) ∧ (σ, ρ̂) ' (σ′, ρ̂′)

I Definition 8. Two stores σ, σ′ are equivalent w.r.t sandbox closures (ρ̂,Λx.e), (ρ̂′,Λx.f)
if the are equivalent on the sandbox’s environment and both abstractions are equal.

(σ, (ρ̂,Λx.e)) ' (σ′, (ρ̂′,Λx.f))⇔

(σ, ρ̂) ' (σ′, ρ̂′) ∧ Λx.e = Λx.f

Now, the observational equivalence for stores can be states as follows.

I Definition 9. Two stores σ, σ′ are observational equivalent under environment ρ if they
are equivalent on all values v ∈ {ρ(x) | x ∈ dom(ρ)}

σ 'ρ σ′ ⇔ ∀x ∈ dom(ρ).(σ, ρ(x)) ' (σ′, ρ(x))

I Lemma 10. Suppose that ρi ` 〈σi, e〉 ⇓ 〈σ′
i, vi〉 then for all σj , ρj with (σi, ρi) ' (σj , ρj)

. ρj ` 〈σj , e〉 ⇓ 〈σ′
j , vj〉 with (σ′

i, ρi) ' (σ′
j , ρj) and (σ′

i, v) ' (σ′
j , w).

Proof. Proof by induction on the derivation of e. J

D.2 Noninterference
I Theorem 11. For each ρ and σ with ρ ` 〈σ, (fresh Λx.e)(f)〉 ⇓ 〈σ′, v〉 it holds that
σ 'ρ σ′.

Proof. Proof by induction on the derivation of e. J

M. Keil and P. Thiemann 43

E Related work

There is a plethora of literature on securing JavaScript, so we focus on the distinguishing
features of our sandbox and on related work not already discussed in the body of the paper.

Sandboxing JavaScript

The most closely related work to our sandbox mechanism is the design of access control
wrappers for revocable references and membranes [39, 26]. In a memory-safe language, a
function can only cause effects to objects reachable from references in parameters and global
variables. A revocable reference can be instructed to detach from the objects, so that they
are no longer reachable and safe from effects. However, as membranes by themselves do not
handle side effects (every property access can be the call of a side-effecting getter) they do
not implement a sandbox in the way we did.

Agten et al. [2] implement a JavaScript sandbox using proxies and membranes. As in our
work, they place wrappers around sensitive data (e.g., DOM elements) to enforce policies
and to prevent the application state from unprotected script inclusion. However, instead of
encapsulating untrusted code they require that scripts are compliant with SES [34], a subset
of JavaScript’s “strict mode” that prohibits features that are either unsafe or that grant
uncontrolled access, and use an SES-library to execute those scripts. A language-embedded
JavaScript parser transforms non-compliant scripts at run time, but doing so restricts the
handling of dynamic code compared to our approach.

TreatJS, a JavaScript contract system [20], uses a sandboxing mechanism similar to the
sandbox presented in this work to guarantee that the execution of a predicate does not
interfere with the execution of a contract abiding host program. As in our work, they use
JavaScript’s dynamic facilities to traverse the scope chain when evaluating predicates and
they use JavaScript proxies to make external references visible when evaluating predicates.

Arnaud et al. [3] provide features similar to the sandboxing mechanism of TreatJS [20].
Both approaches focus on access restriction to guarantee side-effect free contract assertion.
However, neither of them implements a full-blown sandbox, because writing is completely
forbidden and always leads to an exception.

Our sandbox works in a similar way and guarantees read-only access to target objects,
but redirects write operations to shadow objects such that local modifications are only visible
inside the sandbox. However, access restrictions in all tree approaches affect only values
that cross the border between two execution environments. Values that are defined and used
inside, e.g. local values, were not restricted. Write access to those values is fine.

Patil et al. [29] present JCShadow, a reference monitor implemented as a Firefox extension.
Their tool provides fine-grained access control to JavaScript resources. Similar to DecentJS,
they implement shadow scopes that isolate scripts from each other and which regulate
the granularity of object access. Unlike DecentJS, JCShadow achieves a better runtime
performance. While more efficient, their approach is platform-dependent as it is tied to
a specific engine and requires active maintenance to keep up with the development of the
enigine. DecentJS, in contrast, is a JavaScript library based on the reflection API, which is
part of the standard.

Most other approaches (e.g., [11, 27, 8, 1]) implement restrictions by filtering and rewriting
untrusted code or by removing features that are either unsafe of that grant uncontrolled
access. For exampe, Caja [11, 27] compiles JavaScript code in a sanitized JavaScript subset
that can safely be executed on normal engines. Because static guarantees do not apply to
code created at run time using eval or other mechanisms, Caja restricts dynamic features

44 Transaction-based Sandboxing for JavaScript

and rewrites the code to a “cajoled” version with additional run-time checks that prevent
access to unsafe function and objects.

Static approaches come with a number of drawbacks, as shown by a number of papers [23,
9, 31]. First, they either restrict the dynamic features of JavaScript or their guarantees
simply do not apply to code generated at run time. Second, maintenance requires a lot of
effort because the implementation becomes obsolete as the language evolves.

Thus, dynamic effect monitoring and dynamic access restriction plays an important role
in the context of JavaScript security, as shown by a number of authors [3, 39, 26, 19].

Effect Monitoring

Richards et al. [32] provide a WebKit implementation to monitor JavaScript programs at
run time. Rather than performing syntactic checks, they look at effects for history-based
access control and revoke effects that violate policies implemented in C++.

Transcript, a Firefox extension by Dhawan et al. [7], extends JavaScript with support for
transactions and speculative DOM updates. Similar to DecentJS, it builds a transactional
scope and permits the execution of unrestricted guest code. Effects within a transaction are
logged for inspection by the host program. They also provide features to commit updates
and to recover from effects of malicious guest code.

JSConTest [16] is a framework that helps to investigate the effects of unfamiliar JavaScript
code by monitoring the execution and by summarizing the observed access traces to access
permission contracts. It comes with an algorithm [17] that infers a concise effect description
from a set of access paths and it enables the programmer to specify the effects of a function
using access permission contracts.

JSConTest is implemented by an offline source code transformation. Because of JavaScrip’s
flexibility it requires a lot of effort to construct an offline transformation that guarantees
full interposition and that covers the full JavaScript language. This, the implementation of
JSConTest has known omissions: no support for with and prototypes, and it does not apply
to code created at run time using eval or other mechanisms.

JSConTest2 is a redesign and a reimplementation of JSConTest using JavaScript proxies.
The new implementation addresses shortcomings of the previous version: it guarantees
full interposition for the full language and for all code regardless of its origin, including
dynamically loaded code and code injected via eval.

JSConTest2 [18] monitors read and write operations on objects through access permission
contracts that specify allowed effects. A contract restricts effects by defining a set of permitted
access paths starting from some anchor object. However, the approach works differently.
JSConTest2 has to encapsulate sensitive data instead of encapsulating dubious functions.

Language-embedded Systems

JSFlow [15] is a full language-embedded JavaScript interpreter that enforces information flow
policies at run time. Like DecentJS, JSFlow itself is implemented in JavaScript. Compared
to DecentJS, the JSFlow interpreter causes a significantly higher run-time impact than the
our sandbox, which only reimplements the JavaScript semantics on the membrane.

A similar slowdown is reported for js.js [38], another language-embedded JavaScript
interpreter conceived to execute untrusted JavaScript code. Its implementation provides a
wealth of powerful features similar to DecentJS: fine-grained access control, support for the
full JavaScript language, and full browser compatibility. However, its average slowdown in
the range of 100 to 200 is significantly higher than DecentJS’s.

M. Keil and P. Thiemann 45

F Evaluation Results

This section reports on our experience with applying the sandbox to select programs. We
focus on the influence of sandboxing on the execution time.

We use the Google Octane Benchmark Suite24 to measure the performance of the sandbox
implementation. Octane measures a JavaScript engine’s performance by running a selection
of complex and demanding programs (benchmark programs run between 5 and 8200 times).

Google claims that Octane “measure[s] the performance of JavaScript code found in
large, real-world web applications, running on modern mobile and desktop browsers. Each
benchmark is complex and demanding .

We use Octane as it is intended to measure the engine’s performance (benchmark programs
run between 5 and 8200 times). we claim that it is the heaviest kind of benchmark. Every
real-world library (e.g. jQuery) is less demanding and runs without an measurable runtime
impact.

Octane 2.0 consists of 17 programs25 that range from performance tests to real-world
web applications (Figure ??), from an OS kernel simulation to a portable PDF viewer. Each
program focuses on a special purpose, for example, function and method calls, arithmetic
and bit operations, array manipulation, JavaScript parsing and compilation, etc.

F.1 Testing Procedure
All benchmarks were run on a machine with two AMD Opteron processors with 2.20 GHz and
64 GB memory. All example runs and measurements reported in this paper were obtained
with the SpiderMonkey JavaScript engine.

For benchmarking, we wrote a new start script that loads and executes each benchmark
program in a fresh sandbox. By setting the sandbox global to the standard global object, we
ensure that each benchmark program can refer to properties of the global object as needed.

As sandboxing wraps the global object in a membrane it mediates the interaction of the
benchmark program with the global application state.

All run time measurements were taken from a deterministic run, which requires a
predefined number of iterations26, and by using a warm-up run.

F.2 Results
Figure 24 and Figure 25 contains the run-time statistics for all benchmark programs in two
different configurations, which are explained in the figure’s caption, and lists the readouts of
some internal counters. Multiple read effects to the same field of an object are counted as
one effect.

As expected, the run time increases when executing a benchmark in a sandbox. While
some programs like EarleyBoyer, NavierStrokes, pdf.js, Mandreel, and Box2DWeb are heavily
affected, others are only slightly affected: Richards, Crypto, RegExp, and Code loading, for
instance. Unfortunately, DeltaBlue and zlib do not run in our sandbox. DeltaBlue attempts
to add a new property to the global Object.prototype object. As our sandbox prevents
unintended modifications toObject.prototype the new property is only visible inside of the

24 https://developers.google.com/octane
25 https://developers.google.com/octane/benchmark
26Programs run either for one second or for a predefined number of iterations. If there are too few

iterations in one second, it runs for another second.

https://developers.google.com/octane
https://developers.google.com/octane/benchmark

46 Transaction-based Sandboxing for JavaScript

Benchmark Baseline Sandbox w/o Effects Sandbox w Effects
time (sec) time (sec) slowdown time (sec) slowdown

Richards 9 sec 12 sec 1.33 15 sec 1.67
DeltaBlue 9 sec - - - -
Crypto 18 sec 42 sec 2.33 88 sec 4.89
RayTrace 9 sec 74 sec 8.22 498 sec 55.33
EarleyBoyer 19 sec 202 sec 10.63 249 sec 13.11
RegExp 6 sec 9 sec 1.5 12 sec 2
Splay 3 sec 19 sec 6.33 33 sec 11
SplayLatency 3 sec 19 sec 6.33 33 sec 11
NavierStokes 3 sec 56 sec 18.67 61 sec 20.33
pdf.js 7 sec 113 sec 16.14 778 sec 111.14
Mandreel 8 sec 151 sec 18.88 483 sec 60.38
MandreelLatency 8 sec 151 sec 18.88 483 sec 60.38
Gameboy Emulator 4 sec 17 sec 4.25 26 sec 6.50
Code loading 8 sec 11 sec 1.38 12 sec 1.50
Box2DWeb 4 sec 145 sec 36.25 1,302 sec 325.50
zlib 7 sec - - - -
TypeScript 26 sec 61 sec 2.35 328 sec 12.62

Total 135 sec 1.082 sec 8.01 4,401 sec 32.60

Figure 24 Timings from running the Google Octane 2.0 Benchmark Suite. The first column
Baseline gives the baseline execution times without sandboxing. The column Sandbox w/o
Effects shows the time required to complete a sandbox run without effect logging and the relative
slowdown (Sandbox time/Baseline time). The column Sandbox w Effects shows the time and
slowdown (w.r.t. Baseline) of a run with fine-grained effect logging.

current sandbox and only to objects created with new Object() andObject.create() , but not
to those created using object literals.

The zlib benchmark uses an indirect call27 to eval to write objects to the global scope,
which is not allowed by the ECMAScript 6 (ECMA-262) specification. Another benchmark,
Code loading, also uses an indirect call to eval. A small modification makes the program
compatible with the normal eval, which can safely be used in our sandbox.

In the first experiment we turn off effect logging, whereas in the second one it remains
enabled. Doing so separates the performance impact of the sandbox system (proxies and
shadow objects) from the impact caused by the effect system. From the running times we
find that the sandbox itself causes an average slowdown of 8.01 (over all benchmarks).

Our experimental setup wraps the global object in a membrane and mediates the interac-
tion between the benchmark program and the global application state. As each benchmark
program contains every source required to run the benchmark in separation, except global
objects and global functions, the only thing that influences the execution time is read/write
access to global elements.

In absolute times, raw sandboxing causes a run time deterioration of 0.003ms per sandbox
operation (effects) (0.011ms with effect logging enabled). For example, the Box2DWeb
benchmark requires 145 seconds to complete and performs 132,722,198 effects on its membrane.
Its baseline requires 4 seconds. Thus, sandboxing takes an additional 141 seconds. Hence,
there is an overhead of 0.001ms per operation (0.010ms with effect logging enabled).

27An indirect call invokes the eval function by using a name other than eval.

M. Keil and P. Thiemann 47

Benchmark Objects Effects Size of Effect List
Reads Writes Calls

Richards 14 492073 20 2 5
DeltaBlue - - - - -
Crypto 21 4964248 29 2 11
RayTrace 18 51043282 26 3 8
EarleyBoyer 33 4740377 42 8 6
RegExp 16 296995 23 2 6
Splay 16 1635732 23 2 8
SplayLatency 16 1635732 23 2 8
NavierStokes 15 4089 21 2 6
pdf.js 36 77665629 59 8 21
Mandreel 31 39948598 50 2 21
MandreelLatency 31 39948598 50 2 21
Gameboy Emulator 28 1225935 42 2 16
Code loading 12417 107481 50 2 13
Box2DWeb 28 132722198 38 2 14
zlib - - - - -
TypeScript 23 27518481 34 2 9

Total 12743 383949448 530 43 173

Figure 25 Numbers from internal counters. Column Objects shows the numbers of wrap objects
and column Effects gives the total numbers of effects. Column Size of Effect List lists the
numbers of different effects after running the benchmark. Column Reads shows the number of
read effects distinguished from there number of write effects (Column Writes) and distinguished
from there number of call effects (Column Calls). Multiple effects to the same field of an object are
counted as one effect.

The results from the tests also indicate that the garbage collector runs more frequently,
but there is no significant increase in the memory consumption. For the effect-heaviest
benchmark Box2D we find that the virtual memory size increases from 157MByte (raw run)
to 197MB (full run with effect logging).

However, when looking at all benchmarks, the difference in the virtual memory size
compared with the baseline run ranges from -126MByte to +40MByte for a raw sandbox run
without effect logging and from -311MByte to +158MByte for a full run with fine grained
effect logging. Appendix F.4 shows the memory usage of the different benchmark programs
and their difference compared with the baseline.

F.3 Google Octane Scores Values

Octane reports its result in terms of a score. The Octane FAQ28 explains the score as
follows: “In a nutshell: bigger is better. Octane measures the time a test takes to complete
and then assigns a score that is inversely proportional to the run time.” The constants in
this computation are chosen so that the current overall score (i.e., the geometric mean of
the individual scores) matches the overall score from earlier releases of Octane and new
benchmarks are integrated by choosing the constants so that the geometric mean remains
the same. The rationale is to maintain comparability.

28 https://developers.google.com/octane/faq

https://developers.google.com/octane/faq

48 Transaction-based Sandboxing for JavaScript

Benchmark Isolation Effects Baseline

Richards 4825 4135 6552
DeltaBlue - - 6982
Crypto 2418 1131 5669
RayTrace 1387 179 9692
EarleyBoyer 954 767 10345
RegExp 911 1139 1535
Splay 1268 713 8676
SplayLatency 3630 1818 12788
NavierStokes 989 890 15713
pdf.js 434 63 8182
Mandreel 346 106 9102
MandreelLatency 2518 526 12526
Gameboy Emulator 6572 4780 31865
Code loading 7348 6000 9136
Box2DWeb 453 50.1 18799
zlib - - 42543
TypeScript 4554 792 12588

Figure 26 Scores for the Google Octane 2.0 Benchmark Suite (bigger is better). Block Isolation
contains the score values of a raw sandbox run without effect logging, whereas block Effects contains
the score values of a full run with fine-grained effect logging. The last column Baseline gives the
baseline scores without sandboxing.

Figure 26 contains the scores of all benchmark programs in different configurations, which
are explained in the figure’s caption. All scores were taken from a deterministic run, which
requires a predefined number of iterations29, and by using a warm-up run.

As expected, all scores drop when executing the benchmark in a sandbox. In the first
experiment, we turn off effect logging, whereas the second run is with effect logging. This
splits the performance impact into the impact caused by the sandbox system (proxies and
shadow objects) and the impact caused by effect system.

F.4 Memory Consumption
Figure 27, Figure 28, and Figure 29 shows the memory consumption recorded when running
the Google Octane 2.0 Benchmark Suite. The numbers indicate that there is no significant
increase in the memory consumed. For example, the difference of the virtual memory size
ranges from -126 to 40 for a raw sandbox run and from -311 to +158 for a full run with fine
grained effect logging.

29Programs run either for one second or for a predefined number of iterations. If there are to few iterations
in one second, it runs for another second.

M. Keil and P. Thiemann 49

Benchmark Baseline
Virtual Resident Text/Data Shared

size size size size

Richards 134 19 109 5
DeltaBlue - - - -
Crypto 225 105 201 6
RayTrace 148 31 124 5
EarleyBoyer 500 363 476 6
RegExp 226 108 202 6
Splay 535 416 511 6
SplayLatency 535 416 511 6
NavierStokes 141 24 116 5
pdf.js 316 169 292 6
Mandreel 305 182 280 6
MandreelLatency 305 182 280 6
Gameboy Emulator 194 62 170 6
Code loading 268 142 243 6
Box2DWeb 157 53 132 5
zlib - - - -
TypeScript 473 369 448 6

Figure 27 Memory usage when running the Google Octane 2.0 Benchmark Suite without
sandboxing. Column Virtual shows the virtual memory size, column Resident shows the resident
set size, column Text/Data shows the Text/Data segment size, and column Text/Data shows
the Text/Data segment size. All values are in MByte.

Benchmark Sandbox w/o Effects
Virtual Resident Text/Data Shared

size diff. size diff. size diff. size diff.

Richards 135 1 20 1 110 1 5 0
DeltaBlue - - - - - - - -
Crypto 232 +7 106 +1 208 +7 6 0
RayTrace 148 +0 31 +0 124 +0 6 +1
EarleyBoyer 374 -126 272 -91 350 -126 6 0
RegExp 224 -2 107 -1 200 -2 6 0
Splay 466 -69 352 -64 422 -89 6 0
SplayLatency 466 -69 352 -64 422 -89 6 0
NavierStokes 134 -7 18 -6 109 -7 5 0
pdf.js 274 -42 123 -46 250 -42 6 0
Mandreel 263 -42 133 -49 239 -41 5 -1
MandreelLatency 263 -42 133 -49 239 -41 5 -1
Gameboy Emulator 188 -6 60 -2 163 -7 6 0
Code loading 259 -9 138 -4 234 -9 6 0
Box2DWeb 197 +40 97 +44 172 +40 6 +1
zlib - - - - - - - -
TypeScript 424 -49 325 -44 428 -20 6 0

Figure 28 Memory usage of a raw sandbox run without effect logging. Column Virtual shows the
virtual memory size, column Resident shows the resident set size, column Text/Data shows the
Text/Data segment size, and column Text/Data shows the Text/Data segment size. Sub-column
size shows the size in MByte and sub-column diff. shows the difference to the baseline (Sandbox
size - Baseline size) in MByte.

50 Transaction-based Sandboxing for JavaScript

Benchmark Sandbox w Effects
Virtual Resident Text/Data Shared

size diff. size diff. size diff. size diff.

Richards 167 33 54 35 142 33 6 1
DeltaBlue - - - - - - - -
Crypto 209 -16 93 -12 184 -17 6 0
RayTrace 181 +33 63 +32 157 +33 6 +1
EarleyBoyer 189 -311 86 -277 195 -281 6 0
RegExp 224 -2 104 -4 200 -2 6 0
Splay 424 -111 321 -95 399 -112 6 0
SplayLatency 424 -111 321 -95 399 -112 6 0
NavierStokes 134 -7 19 -5 109 -7 5 0
pdf.js 272 -44 116 -53 248 -44 6 0
Mandreel 347 +42 160 -22 323 +43 6 0
MandreelLatency 347 +42 160 -22 323 +43 6 0
Gameboy Emulator 214 +20 84 +22 190 +20 6 0
Code loading 262 -6 139 -3 238 -5 6 0
Box2DWeb 191 +34 72 +19 166 +34 6 +1
zlib - - - - - - - -
TypeScript 631 +158 493 +124 607 +159 6 0

Figure 29 Memory usage of a full run with fine-grained effect logging. Column Virtual shows the
virtual memory size, column Resident shows the resident set size, column Text/Data shows the
Text/Data segment size, and column Text/Data shows the Text/Data segment size. Sub-column
size shows the size in MByte and sub-column diff. shows the difference to the baseline (Sandbox
size - Baseline size) in MByte.

	Introduction
	Transaction-based Sandboxing: A Primer
	Cross-Sandbox Access
	Effect Monitoring
	Inspecting a Sandbox
	Transaction Processing

	Sandbox encapsulation
	Proxies and membranes
	Shadow objects
	Sandbox scope
	Function recompilation
	DOM updates
	Policies

	Discussion
	Evaluation
	Conclusion
	Motivation
	JavaScript issues
	Isolating third-party JavaScript
	Committing intended modifications
	Shadowing DOM operations
	Using transactions
	Full HTML Example
	Effects Lists
	Effects of sbx
	All Read Effects on this
	All Write Effects on this
	All Read Effects on Date
	All Write Effects on Date
	All Read Effects on Date.prototype
	All Write Effects on Date.prototype

	Effects of sbx2
	All Read Effects on this
	All Write Effects on this
	All Read Effects on window
	All Write Effects on window

	Application Scenarios
	TreatJS
	TreatJS Online
	Observer Proxies

	Semantics of Sandboxing
	Core Syntax of J
	Semantic Domains
	Evaluation of J
	Sandboxing of J
	Evaluation of SBXJ
	Sandbox Encapsulation
	Application, Read, and Assignment

	Technical Results
	Observational Equivalence on Stores
	Noninterference

	Related work
	Evaluation Results
	Testing Procedure
	Results
	Google Octane Scores Values
	Memory Consumption

