
On Contracts and Sandboxes for JavaScript

Matthias Keil, Peter Thiemann
University of Freiburg, Germany

August 6, 2015
Darmstadt, Germany

Motivation

89.8 %
of all web sites use JavaScript1

Most important client-side language for web sites

Web-developers rely on third-party libraries

e.g. for calendars, maps, social networks

1according to http://w3techs.com/, status of July 2015

Matthias Keil, Peter Thiemann On Contracts and Sandboxes August 6, 2015 2 / 43

http://w3techs.com/

Situation of a Web-developer

Matthias Keil, Peter Thiemann On Contracts and Sandboxes August 6, 2015 3 / 43

JavaScript issues

Dynamic programming language

Code is accumulated by dynamic loading
e.g. eval, mashups

JavaScript has no security awareness

No namespace or encapsulation management
Global scope for variables/ functions
All scripts have the same authority

Problems

1 Side effects may cause unexpected behavior

2 Program understanding and maintenance is difficult

3 Libraries may get access to sensitive data

4 User code may be prone to injection attacks

Matthias Keil, Peter Thiemann On Contracts and Sandboxes August 6, 2015 4 / 43

Key challenges of present research

All-or-nothing choice when including code

Isolation guarantees noninterference

Some scripts must have access the application state or are
allowed to change it

Goals

1 Manage untrusted JavaScript Code

2 Control the use of data by included scripts

3 Reason about effects of included scripts

Matthias Keil, Peter Thiemann On Contracts and Sandboxes August 6, 2015 5 / 43

Language-embedded Systems

Shortcomings

Static verifiers are imprecise because of JavaScript’s dynamic
features or need to restrict JavaScript’s dynamic features

Interpreter modifications guarantee full observability but
need to be implemented in all existing engines

Implemented as a library in JavaScript

Library can easily be included in existing projects

All aspects are accessible thought an API

No source code transformation or change in the JavaScript
run-time system is required

Matthias Keil, Peter Thiemann On Contracts and Sandboxes August 6, 2015 6 / 43

Timeline

2011

JSConTest
Access Permission

Contracts for Scripting
Languages

2013

JSConTest2
Efficient Access
Analysis Using

JavaScript Proxies

2015

TreatJS
Higher-Order Contracts

for JavaScript

TreatJS-Sandbox
Transaction-based

Sandboxing of
JavaScript

?

Ongoing Work
Temporal Contracts,
Lemma Contracts,

Invariants

Matthias Keil, Peter Thiemann On Contracts and Sandboxes August 6, 2015 7 / 43

JSConTest

JSConTest
Access Permission Contracts for Scripting

Languages

Matthias Keil, Peter Thiemann On Contracts and Sandboxes August 6, 2015 8 / 43

JSConTest

Investigate effects of unfamiliar function

Type and effect contracts with run-time checking

Summarizes observed access traces to a concise description

Effect contracts specifying allowed access paths

Type and effect contracts

/∗c (obj, obj) −> any with [x.b,y.a] ∗/
function f(x, y) {
y.a = 1;
y.b = 2; 7 violation
}

Matthias Keil, Peter Thiemann On Contracts and Sandboxes August 6, 2015 9 / 43

Shortcomings of JSConTest

Implemented by an offline code transformation

Partial interposition (dynamic code, eval, with, . . .)
Tied to a particular version of JavaScript
Transformation hard to maintain

Special contract syntax

Requires a special JavaScript parser

Efficiency issues

Naive representation of access paths
Wastes memory and impedes scalability

Matthias Keil, Peter Thiemann On Contracts and Sandboxes August 6, 2015 10 / 43

JSConTest2

JSConTest2
Efficient Access Analysis Using JavaScript Proxies

Matthias Keil, Peter Thiemann On Contracts and Sandboxes August 6, 2015 11 / 43

JSConTest2

Redesign and reimplementation of JSConTest based on
JavaScript proxies

Advantages

Full interposition for the full language

Including dynamically loaded code and eval

Safe for future language extensions

No transformation to maintain

Runs faster in less memory

Efficient representation of access paths
Incremental path matching

Maintenance is simplified

No custom syntax for contracts

Matthias Keil, Peter Thiemann On Contracts and Sandboxes August 6, 2015 12 / 43

JSConTest2

Contracts on Objects

var obj = APC.permit(’(a.?+b∗)’, {a:{b:5},b:{b:11}});
a = obj.a; // APC.permit(’?’, {b:5});
a.b = 3;

APC encapsulates JSConTest2

permit wraps an object with a permission. Arguments:
1 Permission encoded in a string
2 Object that is protected by the permission

Contract specifies permitted access paths
Last property is readable/ writeable
Prefix is read-only
Not addressed properties are neither readable nor writeable
Read-only paths possible (@ denotes a non-existing property)

Matthias Keil, Peter Thiemann On Contracts and Sandboxes August 6, 2015 13 / 43

Proxy Membrane

ProxyA

ProxyB

ProxyC

TargetA

TargetB

TargetC

x

y

z

x

y

z

Contract: C
Path: P

Contract: ∂xC
Path: P.x

Contract: ∂yC
Path: P.y

Contract: (∂z∂xC)&(∂yC)
Path: P.(x .z |y)

Matthias Keil, Peter Thiemann On Contracts and Sandboxes August 6, 2015 14 / 43

The JSConTest2 Approach

Implementation based on the JavaScript Proxy API

Shortcomings of previous, translation-based implementation
avoided

Full interposition of contracted objects

Proxy intercepts all operations
Proxy-handler contains a contract and a path set
Forwards the operation or signals a violation

Returned object contains the remaining contract
(Membrane)

Access contracts are regular expressions on literals

Each literal defines a property access
The language defines a set of permitted access paths

Matthias Keil, Peter Thiemann On Contracts and Sandboxes August 6, 2015 15 / 43

TreatJS

TreatJS
Higher-Order Contracts for JavaScript

Matthias Keil, Peter Thiemann On Contracts and Sandboxes August 6, 2015 16 / 43

Introduction

Language embedded contract system for JavaScript

Enforced by run-time monitoring

Specifies the interface of a software component

Pre- and postconditions

Standard abstractions for higher-order-contracts (base,
function, and dependent contracts) [Findler,Felleisen’02]

Systematic blame calculation

Side-effect free contract execution

Contract constructors generalize dependent contracts

Matthias Keil, Peter Thiemann On Contracts and Sandboxes August 6, 2015 17 / 43

Base Contract [Findler,Felleisen’02]

Base Contracts are built from predicates

Specified by a plain JavaScript function

function isNumber (arg) {
return (typeof arg) === ’number’;
};
var Number = Contract.Base(isNumber);

assert(1, Number); 3

assert(’a’, Number); 7 blame the subject

Subject v gets blamed for Base Contract B iff:
B(v) 6= true

Matthias Keil, Peter Thiemann On Contracts and Sandboxes August 6, 2015 18 / 43

Function Contract [Findler,Felleisen’02]

// Number × Number → Number
function plus (x, y) {
return (x + y);
}

var plus = assert(plus, Contract.Function([Number ,
Number], Number));

Matthias Keil, Peter Thiemann On Contracts and Sandboxes August 6, 2015 19 / 43

Function Contract [Findler,Felleisen’02]

// Number × Number → Number
function plus (x, y) {
return (x + y);
}

plus(’a’, ’a’); 7 blame the context

Context gets blamed for C → C′ iff:
Argument x gets blamed for C (as subject)

Matthias Keil, Peter Thiemann On Contracts and Sandboxes August 6, 2015 19 / 43

Function Contract [Findler,Felleisen’02]

// Number × Number → Number
function plusBroken (x, y) {
return (x>0 && y>0) ? (x + y) : ’Error’;
}

plusBroken(0, 1); 7 blame the subject

Subject f gets blamed for C → C′ iff:
¬ (Context gets blamed C) ∧ (f (x) gets blamed C′)

Matthias Keil, Peter Thiemann On Contracts and Sandboxes August 6, 2015 19 / 43

TreatJS

New!

Matthias Keil, Peter Thiemann On Contracts and Sandboxes August 6, 2015 20 / 43

Overloaded Operator

Function plus works for strings, too

Requires to model overloading and multiple inheritances

// Number × Number → Number
function plus (x, y) {
return (x + y);
}

plus(’a’, ’a’); 7 blame the context

Matthias Keil, Peter Thiemann On Contracts and Sandboxes August 6, 2015 21 / 43

Combinations of Contracts

No support for arbitrary combination of contracts

Racket supports and/c and or/c

Attempt to extend conjunction and disjunction to
higher-oder contracts

Matthias Keil, Peter Thiemann On Contracts and Sandboxes August 6, 2015 22 / 43

Combinations of Contracts
and/c

and/c tests any contract

no value fulfills Number and String at the same time

(and/c (Number × Number → Number) (String × String → String))
function plus (x, y) {
return (x + y);
}

plus(’a’, ’a’); 7 blame the context

Matthias Keil, Peter Thiemann On Contracts and Sandboxes August 6, 2015 23 / 43

Combinations of Contracts
or/c

or/c checks first-order parts and fails unless exactly one
(range) contract remains

Work for disjoint base contracts

No combination of higher-oder contracts

No support for arbitrary combinations of contracts

(or/c (Number × Number → Number) (String × String → String))
function plus (x, y) {
return (x + y);
}

plus(’a’, ’a’); 3

Matthias Keil, Peter Thiemann On Contracts and Sandboxes August 6, 2015 24 / 43

Combinations of Contracts
TreatJS

Support for arbitrary combination of contracts

Combination of base and function contracts
Combination of function contracts with a different arity

Intersection and union contracts

Boolean combination of contracts

Matthias Keil, Peter Thiemann On Contracts and Sandboxes August 6, 2015 25 / 43

Intersection Contract

// (Number × Number → Number) ∩ (String × String → String)
function plus (x, y) {
return (x + y);
}

var plus = assert(plus, Contract.Intersection(
Contract.Function([Number , Number], Number)
Contract.Function([String , String], String));

Matthias Keil, Peter Thiemann On Contracts and Sandboxes August 6, 2015 26 / 43

Intersection Contract

// (Number × Number → Number) ∩ (String × String → String)
function plus (x, y) {
return (x + y);
}

plus(true, true); 7 blame the context

Context gets blamed for C ∩ C′ iff:
(Context gets blamed for C) ∧ (Context gets blamed for C′)

Matthias Keil, Peter Thiemann On Contracts and Sandboxes August 6, 2015 26 / 43

Intersection Contract

// (Number × Number → Number) ∩ (String × String → String)
function plusBroken (x, y) {
return (x>0 && y>0) ? (x + y) : ’Error’;
}

plusBroken(0, 1); 7 blame the subject

Subject f gets blamed for C ∩ C′ iff:
(f gets blamed for C) ∨ (f gets blamed for C′)

Matthias Keil, Peter Thiemann On Contracts and Sandboxes August 6, 2015 26 / 43

Contract Assertion

A failing contract must not signal a violation immediately

Violation depends on combinations of failures in different
sub-contracts

// (Number → Number) ∩ (String → String)
function addOne (x) {
return (x + 1);
}

addOne(’a’);

Matthias Keil, Peter Thiemann On Contracts and Sandboxes August 6, 2015 27 / 43

Contract Assertion

A failing contract must not signal a violation immediately

Violation depends on combinations of failures in different
sub-contracts

// (Number → Number) ∩ (String → String)
function addOne (x) {
return (x + 1);
}

addOne(’a’);

Matthias Keil, Peter Thiemann On Contracts and Sandboxes August 6, 2015 27 / 43

Contract Assertion

A failing contract must not signal a violation immediately

Violation depends on combinations of failures in different
sub-contracts

// (Number → Number) ∩ (String → String)
function addOne (x) {
return (x + 1);
}

addOne(’a’); 3

Matthias Keil, Peter Thiemann On Contracts and Sandboxes August 6, 2015 27 / 43

Blame Calculation

Contract assertion must connect each contract with the
enclosing operations

Callback implements a constraint and links each contracts to
its next enclosing operation

Reports a record containing two fields, context and subject

Fields range over B4 = {⊥, f, t,>} [Belnap’1977]

Matthias Keil, Peter Thiemann On Contracts and Sandboxes August 6, 2015 28 / 43

Non-Interference

No syntactic restrictions on predicates

Problem: Contract may interfere with program execution

Solution: Predicate evaluation takes place in a sandbox

function isNumber (arg) {
type = (typeof arg);
return type === ’number’;
};

var Number = Contract.Base(isNumber);

Matthias Keil, Peter Thiemann On Contracts and Sandboxes August 6, 2015 29 / 43

Non-Interference

No syntactic restrictions on predicates

Problem: Contract may interfere with program execution

Solution: Predicate evaluation takes place in a sandbox

function isNumber (arg) {
type = (typeof arg); 7 access forbidden
return type === ’number’;
};

var Number = Contract.Base(isNumber);

assert(1, Number);

Matthias Keil, Peter Thiemann On Contracts and Sandboxes August 6, 2015 29 / 43

Sandbox

All contracts guarantee noninterference

Read-only access is safe

var Array = Contract.Base(function (arg) {
return (arg instanceof Array); 7 access forbidden
});

Matthias Keil, Peter Thiemann On Contracts and Sandboxes August 6, 2015 30 / 43

Sandbox

All contracts guarantee noninterference

Read-only access is safe

var Array = Contract.Base(function (arg) {
return (arg instanceof OutsideArray); 3

});

var Array = Contract.With({OutsideArray:Array}, Array);

Matthias Keil, Peter Thiemann On Contracts and Sandboxes August 6, 2015 30 / 43

Contract Constructor

Building block for dependent, parameterized, abstract, and
recursive contracts

Constructor gets evaluated in a sandbox, like a predicate

Returns a contract

No further sandboxing for predicates

var Type = Contract.Constructor(function (type) {
return Contract.Base(function (arg) {
return (typeof arg) === type;
});
});

var Number = Type (’number’);

Matthias Keil, Peter Thiemann On Contracts and Sandboxes August 6, 2015 31 / 43

TreatJS-Sandbox

TreatJS-Sandbox
Transaction-based Sandboxing of JavaScript

Matthias Keil, Peter Thiemann On Contracts and Sandboxes August 6, 2015 32 / 43

TreatJS-Sandbox

Language-embedded sandbox for full JavaScript

Inspired by JSConTest2 and Revocable References

Adapts SpiderMonkey’s compartment concept to run code in
isolation to the application state

Provides features known from transaction processing in
database systems and transactional memory

Matthias Keil, Peter Thiemann On Contracts and Sandboxes August 6, 2015 33 / 43

Sandbox Encapsulation

A reference is the right to access an object

Requires to control property read and property write

Sandbox Encapsulation

1 Place a write protection on objects

2 Remove external bindings of functions

Matthias Keil, Peter Thiemann On Contracts and Sandboxes August 6, 2015 34 / 43

Identity Preserving Membrane

ProxyA

ProxyB

ProxyC

TargetA

TargetB

TargetC

x
y

z

x
y

z

Matthias Keil, Peter Thiemann On Contracts and Sandboxes August 6, 2015 35 / 43

JavaScript Proxies

Handler

Proxy Target Shadow

proxy.x;
proxy.y=1;
proxy.y;

handler.get(target, ’x’, proxy);
handler.set(target, ’y’, 1, proxy);
handler.get(target, ’y’, proxy);

target[’x’];
target[’y’]=1;
target[’y’];

Meta-Level

Base-Level

Matthias Keil, Peter Thiemann On Contracts and Sandboxes August 6, 2015 36 / 43

Shadow Objects

Handler

Proxy Target Shadow

proxy.x;
proxy.y=1;
proxy.y;

handler.get(target, ’x’, proxy);
handler.set(target, ’y’, 1, proxy);
handler.get(target, ’y’, proxy);

target[’x’]; shadow[’y’]=1;
shadow[’y’];

Meta-Level

Base-Level

Matthias Keil, Peter Thiemann On Contracts and Sandboxes August 6, 2015 37 / 43

Function Recompilation

Function decompilation uses the
Function.prototype.toString method to return a string that
contains the source code of that function

Applying eval to the string creates a fresh variant

A with statement places a proxy in top of the scope chain

The hasOwnProperty trap always returns true

Matthias Keil, Peter Thiemann On Contracts and Sandboxes August 6, 2015 38 / 43

JavaScript Scope Chain

var x = 1;

function f (y){

function g () {
var z = 1;
return x+y+z;
}

}

Matthias Keil, Peter Thiemann On Contracts and Sandboxes August 6, 2015 39 / 43

Sandbox Scope Chain

var x = 1;

with(sbxglobal){

function g () {
var z = 1;
return x+y+z;
}

}

Matthias Keil, Peter Thiemann On Contracts and Sandboxes August 6, 2015 40 / 43

Conclusion

JSConTest/ JSConTest2: Effect monitoring for JavaScript

Enables to specify effects using access permission contracts

TreatJS: Language embedded, dynamic, higher-order
contract system for full JavaScript

Support for intersection and union contracts

Contract constructors with local scope

Sandbox: Language embedded sandbox for full JavaScript

Runs code in a configurable degree of isolation

Provides a transactional scope

Matthias Keil, Peter Thiemann On Contracts and Sandboxes August 6, 2015 41 / 43

Ongoing Work

Temporal/ Computation Contracts

Lemma Contracts

Invariants

Different blaming semantics (Lax, Picky, Indy)

Matthias Keil, Peter Thiemann On Contracts and Sandboxes August 6, 2015 42 / 43

Further Challenges

Limitations

Dynamic contract checking impacts the execution time

Arbitrary combinations of contracts lead to unprecise error
messages

1 Hybrid contract checking

2 Static pre-checking of contracts

3 Optimization, contract rewriting

Matthias Keil, Peter Thiemann On Contracts and Sandboxes August 6, 2015 43 / 43

	Introduction
	Introduction

	JSConTest
	JSConTest

	JSConTest2
	Introduction
	Effects for JavaScript
	The JSConTest2 Approach

	TreatJS
	Introduction
	Contracts
	Base Contract
	Higher-Order Contracts
	TreatJS

	Contract Monitoring
	Non-Interference
	Constructor

	TreatJS-Sandbox
	TreatJS-Sandbox
	Introduction
	Sandbox Encapsulation

	Conclusion
	Conclusion

