
Efficient Dynamic Access Analysis

Using JavaScript Proxies

DLS’13

Matthias Keil, Peter Thiemann
Institute for Computer Science
University of Freiburg
Freiburg, Germany

October 28, 2013, Indianapolis, Indiana, USA.

Motivation

92 %

of all web sites use JavaScript

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 2 / 25

Motivation

92 %

of all web sites use JavaScript

Most important client-side language for web sites

Web-developers rely on third-party libraries

e.g. for calendars, maps, social networks

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 2 / 25

Situation of a Web-developer

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 3 / 25

Situation of a Web-developer

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 3 / 25

Situation of a Web-developer

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 3 / 25

Situation of a Web-developer

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 3 / 25

Situation of a Web-developer

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 3 / 25

JavaScript issues

Dynamic programming language

Code is accumulated by dynamic loading
e.g. eval, mashups

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 4 / 25

JavaScript issues

Dynamic programming language

Code is accumulated by dynamic loading
e.g. eval, mashups

JavaScript has no security awareness

No namespace or encapsulation management
Global scope for variables/ functions
All scripts have the same authority

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 4 / 25

JavaScript issues

Dynamic programming language

Code is accumulated by dynamic loading
e.g. eval, mashups

JavaScript has no security awareness

No namespace or encapsulation management
Global scope for variables/ functions
All scripts have the same authority

Problems

1 Side effects may cause unexpected behavior

2 Program understanding and maintenance is difficult

3 Libraries may get access to sensitive data

User code may be prone to injection attacks

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 4 / 25

JSConTest
Type and effect contracts with run-time checking

JSConTest, a tool for effect monitoring and inference

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 5 / 25

JSConTest
Type and effect contracts with run-time checking

JSConTest, a tool for effect monitoring and inference

Type and effect contracts

Type contracts

1 func t ion (x , y) /∗ c (i n t , i n t) −> boo l ∗/ { . . . }

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 5 / 25

JSConTest
Type and effect contracts with run-time checking

JSConTest, a tool for effect monitoring and inference

Type and effect contracts

Type contracts

1 func t ion (x , y) /∗ c (i n t , i n t) −> boo l ∗/ { . . . }

Effect contracts specifying access paths

1 j s : t r e e . () −> i n t with [t h i s . / l e f t | r i g h t /∗ . b a l]

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 5 / 25

JSConTest
Type and effect contracts with run-time checking

JSConTest, a tool for effect monitoring and inference

Type and effect contracts

Type contracts

1 func t ion (x , y) /∗ c (i n t , i n t) −> boo l ∗/ { . . . }

Effect contracts specifying access paths

1 j s : t r e e . () −> i n t with [t h i s . / l e f t | r i g h t /∗ . b a l]

Investigate effects of unfamiliar function

Monitoring its execution
Summarizing the observed traces to compact descriptions

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 5 / 25

Shortcomings of JSConTest

Implemented by an offline code transformation

Partial interposition (dynamic code, eval, . . .)
Tied to a particular version of JavaScript
Transformation hard to maintain

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 6 / 25

Shortcomings of JSConTest

Implemented by an offline code transformation

Partial interposition (dynamic code, eval, . . .)
Tied to a particular version of JavaScript
Transformation hard to maintain

Special contract syntax

Requires a special JavaScript parser

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 6 / 25

Shortcomings of JSConTest

Implemented by an offline code transformation

Partial interposition (dynamic code, eval, . . .)
Tied to a particular version of JavaScript
Transformation hard to maintain

Special contract syntax

Requires a special JavaScript parser

Efficiency issues

Naive representation of access paths
Wastes memory and impedes scalability

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 6 / 25

JSConTest2

Redesign and reimplementation of JSConTest based on
JavaScript proxies

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 7 / 25

JSConTest2

Redesign and reimplementation of JSConTest based on
JavaScript proxies

Advantages

Full interposition for the full language

Including dynamically loaded code and eval

Safe for future language extensions

No transformation to maintain

Runs faster in less memory

Efficient representation of access paths
Incremental path matching

Maintenance is simplified

No custom syntax for contracts

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 7 / 25

Effects for JavaScript

Only some parts of an object are accessible:

1 var proxy = APC . permit (’ (a.?+b∗) ’ , {a : { b : 5} , b : { b : 1 1 } }) ;
2 a = proxy . a ; // APC .permit (’?’, {b:5});

3 a . b = 3 ;

APC encapsulates JSConTest2

permit wraps an object with a permission. Arguments:

1 Permission encoded in a string
2 Object that is protected by the permission

Contract specifies permitted access paths

Last property is readable/ writeable
Prefix is read-only
Not addressed properties are neither readable nor writeable
Read-only paths possible (@ denotes a non-existing property)

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 8 / 25

Contracts on Functions

1 var f unc = APC . permitArgs (’ arguments . 0 . (a.?+b∗) ’ ,
2 func t ion (arg0) {
3 // do something

4 }) ;

permitArg wraps a function with permissions

1 contract applied to function arguments
2 function

Arguments accessed by position arguments.0

No reliable way to access parameter names
Function may use unlisted parameters
Parameter names may not be unique

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 9 / 25

Interaction of Contracts

1 var x = APC . permit (’ ((a+a . b)+b . b .@) ’ , {a : { b : 3} , b : { b : 5 } }) ;
2 x . a = x . b ; // APC .permit (’b.@’, {b:5});

3 y = x . a ; // APC .permit (’b & b.@’, {b:5});

4 y . b = 7 ; // violation

Line 2 reads x.b and writes x.a

Afterwards, x.b and x.a are aliases

JSConTest2 enforces both contracts reaching x.b and x.a

x.a carries contract ’(ǫ+b)&b.@’ = ’b.@’

Thus, writing to x.a.b is not permitted

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 10 / 25

Syntax of Access Permission Contracts

Literal ∋ ℓ ::= ∅ | @ | r

Contract ∋ C ::= ǫ | ℓ | C∗ | C+C | C&C | C.C

Each literal ℓ defines a property access

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 11 / 25

Syntax of Access Permission Contracts

Literal ∋ ℓ ::= ∅ | @ | r

Contract ∋ C ::= ǫ | ℓ | C∗ | C+C | C&C | C.C

Each literal ℓ defines a property access

Access contracts are regular expressions on literals

LJCK denotes the language of C, that defines a set of
permitted access paths

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 11 / 25

The JSConTest2 Approach

Full interposition of contracted objects

Proxy intercepts all operations
Proxy-handler contains contract C and path set P
Forwards the operation or signals a violation

Returned object contains the remaining contract (Membrane)

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 12 / 25

JavaScript Proxies

Meta-Level

Base-Level

Handler

Proxy Target

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 13 / 25

JavaScript Proxies

Meta-Level

Base-Level

Handler

Proxy p.foo Target

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 13 / 25

JavaScript Proxies

Meta-Level

Base-Level

Handler h.get(t , ’foo’ , p)

Proxy p.foo Target

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 13 / 25

JavaScript Proxies

Meta-Level

Base-Level

Handler h.get(t , ’foo’ , p)

Proxy p.foo Target t [’foo’]

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 13 / 25

JavaScript Proxies

Meta-Level

Base-Level

Handler h.set(t , ’bar’ , 4711, p)

Proxy p.bar=4711 Target t [’bar’]=4711

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 13 / 25

Membranes

Access Path: P

Contract: C
Proxy t

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 14 / 25

Membranes

Access Path: P

Contract: C
Proxy

p

t

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 14 / 25

Membranes

Access Path: P

Contract: C
Proxy

p

t

t[p]

p

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 14 / 25

Membranes

Access Path: P

Contract: C
Proxy

Access Path: P.p

Contract: ∂p(C)
Proxy

p

t

t[p]

p

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 14 / 25

Membranes

Access Path: P

Contract: C
Proxy

Access Path: P.p

Contract: ∂p(C)
Proxy

p

t

t[p]

p

∂p(C) is the Brzozowski derivative of C with respect to p

∂p(C) accepts the quotient language:
p−1LJCK = {w | pw ∈ LJCK}

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 14 / 25

Membrane issues

What if a contract is applied to a proxy?

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 15 / 25

Membrane issues

What if a contract is applied to a proxy?

1 The proxy is wrapped in another proxy

Tradeoff: Inefficient due to chains of proxies

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 15 / 25

Membrane issues

What if a contract is applied to a proxy?

1 The proxy is wrapped in another proxy

Tradeoff: Inefficient due to chains of proxies

2 The existing proxy is reused with updated information
Requires merge operations for contracts and paths

Intersection of contracts

Union of path sets

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 15 / 25

Reuse Updated Proxy

Access Paths

Native representations of path sets waste space

Path update becomes inefficient

Solution: Store paths in a trie structure

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 16 / 25

Reuse Updated Proxy

Access Paths

Native representations of path sets waste space

Path update becomes inefficient

Solution: Store paths in a trie structure

Access Permission Contracts

Contracts get large and may contain redundant parts

Computing derivative becomes more expensive

Solution: Contract rewriting

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 16 / 25

Contract Rewriting

Suppose that LJCK ⊆ LJC′K. Then simplify

C+C′ to C′

C&C′ to C

Definition (Containment)

A contract C is contained in another contract C′, written as
C ⊑ C′, iff LJCK ⊆ LJC′K.

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 17 / 25

Contract Rewriting

Suppose that LJCK ⊆ LJC′K. Then simplify

C+C′ to C′

C&C′ to C

Definition (Containment)

A contract C is contained in another contract C′, written as
C ⊑ C′, iff LJCK ⊆ LJC′K.

Requirement

Decide C ⊑ C′ quickly

Use Antimirov’s technique, based on derivatives

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 17 / 25

Antimirov: Deciding Containment by Rewriting

Lemma (Containment)

C ⊑ C′ ⇔ ν(∂P(C
′)) for all P ∈ LJCK (1)

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 18 / 25

Antimirov: Deciding Containment by Rewriting

Lemma (Containment)

C ⊑ C′ ⇔ ν(∂P(C
′)) for all P ∈ LJCK (1)

Lemma (Containment2)

C ⊑ C′ ⇔ ∂p(C) ⊑ ∂p(C
′) ∧ (ν(C) ⇒ ν(C′))

for all p ∈ {p | pw ∈ LJCK}
(2)

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 18 / 25

Antimirov: Deciding Containment by Rewriting

Lemma (Containment)

C ⊑ C′ ⇔ ν(∂P(C
′)) for all P ∈ LJCK (1)

Lemma (Containment2)

C ⊑ C′ ⇔ ∂p(C) ⊑ ∂p(C
′) ∧ (ν(C) ⇒ ν(C′))

for all p ∈ {p | pw ∈ LJCK}
(2)

Drawback

Literal r leads to an infinite alphabet

Requires infinitely many test

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 18 / 25

Literal-based derivative

Definition (First Contract Literals)

first(ℓ) = {ℓ}
first(ǫ) = {}
first(C∗) = first(C)
first(C+C′) = first(C) ∪ first(C′)
first(C&C′) = {ℓ ⊓r ℓ

′ | ℓ ∈ first(C), ℓ′ ∈ first(C′)}

first(C.C′) =

{

first(C) ∪ first(C′), ν(C)

first(C), otherwise

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 19 / 25

Literal-based derivative

Definition (First Contract Literals)

first(ℓ) = {ℓ}
first(ǫ) = {}
first(C∗) = first(C)
first(C+C′) = first(C) ∪ first(C′)
first(C&C′) = {ℓ ⊓r ℓ

′ | ℓ ∈ first(C), ℓ′ ∈ first(C′)}

first(C.C′) =

{

first(C) ∪ first(C′), ν(C)

first(C), otherwise

It holds that:

{p | pw ∈ LJCK} = LJfirst(C)K (3)

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 19 / 25

Containment with Contract Literals

∇ℓ(C) is the literal-based derivative of C with respect to ℓ

Lemma (Syntactic derivative of contracts)

LJ∇ℓ(C)K =
⋂

p∈LJℓK

LJ∂p(C)K (4)

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 20 / 25

Containment with Contract Literals

∇ℓ(C) is the literal-based derivative of C with respect to ℓ

Lemma (Syntactic derivative of contracts)

LJ∇ℓ(C)K =
⋂

p∈LJℓK

LJ∂p(C)K (4)

Theorem (Containment)

C ⊑ C′ ⇐ ∇ℓ(C) ⊑ ∇ℓ(C
′) ∧ (ν(C) ⇒ ν(C′))

for all ℓ ∈ first(C)
(5)

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 20 / 25

Implementation

Implementation based on the JavaScript Proxy API

Implemented since Firefox 18.0 and Chrome 3.5

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 21 / 25

Implementation

Implementation based on the JavaScript Proxy API

Implemented since Firefox 18.0 and Chrome 3.5

Implementation provides an proxy-handler

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 21 / 25

Implementation

Implementation based on the JavaScript Proxy API

Implemented since Firefox 18.0 and Chrome 3.5

Implementation provides an proxy-handler

Two evaluation modes:

1 Observer Mode: Only path and violation logging
2 Protector Mode: Omits forbidden read and write access

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 21 / 25

Implementation

Implementation based on the JavaScript Proxy API

Implemented since Firefox 18.0 and Chrome 3.5

Implementation provides an proxy-handler

Two evaluation modes:

1 Observer Mode: Only path and violation logging
2 Protector Mode: Omits forbidden read and write access

Limitations

1 Cannot directly protect DOM objects

Because of the browser’s sandbox

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 21 / 25

Implementation

Implementation based on the JavaScript Proxy API

Implemented since Firefox 18.0 and Chrome 3.5

Implementation provides an proxy-handler

Two evaluation modes:

1 Observer Mode: Only path and violation logging
2 Protector Mode: Omits forbidden read and write access

Limitations

1 Cannot directly protect DOM objects

Because of the browser’s sandbox

2 Proxies are not transparent with respect to equality

For distinct proxies == and === returns false, even if the
target object is the same

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 21 / 25

Evaluation

Benchmark Programs

Google V8 Benchmark Suite
Benchmarks accompanying the TAJS system
Libraries like jQuery
Dumped web pages like youtube or twitter

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 22 / 25

Evaluation

Benchmark Programs

Google V8 Benchmark Suite
Benchmarks accompanying the TAJS system
Libraries like jQuery
Dumped web pages like youtube or twitter

Applied access contract inference by logging with universal
contract ?∗

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 22 / 25

Evaluation

Benchmark Programs

Google V8 Benchmark Suite
Benchmarks accompanying the TAJS system
Libraries like jQuery
Dumped web pages like youtube or twitter

Applied access contract inference by logging with universal
contract ?∗

Prepared customized contracts to protect objects

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 22 / 25

Evaluation

Benchmark Programs

Google V8 Benchmark Suite
Benchmarks accompanying the TAJS system
Libraries like jQuery
Dumped web pages like youtube or twitter

Applied access contract inference by logging with universal
contract ?∗

Prepared customized contracts to protect objects

Initial implementation: quickly ran out of memory

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 22 / 25

Evaluation

Benchmark Programs

Google V8 Benchmark Suite
Benchmarks accompanying the TAJS system
Libraries like jQuery
Dumped web pages like youtube or twitter

Applied access contract inference by logging with universal
contract ?∗

Prepared customized contracts to protect objects

Initial implementation: quickly ran out of memory

Final implementation: acceptable performance

Using trie structures and contract rewriting

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 22 / 25

Google V8 Benchmark Suite

Benchmark Baseline Contracts Without Full

only logging

RegExp 2.4sec 2.4sec 2.4sec 2.4sec
NavierStokes 2.3sec 2.3sec 2.3sec 2.3sec
EarleyBoyer 4.3sec 4.4sec 4.4sec 4.4sec
DeltaBlue 2.3sec 3.3sec 9.5sec 9.8sec
Richards 2.3sec 3.3sec 18.6min 22.5min
RayTrace 2.3sec 1.6min 1.1h 1.2h
Crypto 4.4sec 2.6min 2.5h 4.2h
Splay 2.3sec 2.3sec - -

Most time consuming parts are Path Generation and Contract

Derivation

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 23 / 25

Conclusion

Effect logging and dynamic enforcement of access contracts
with proxies

Shortcomings of previous, translation-based implementation
avoided

Support for the full JavaScript language
Guarantees full interposition

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 24 / 25

Conclusion

Effect logging and dynamic enforcement of access contracts
with proxies

Shortcomings of previous, translation-based implementation
avoided

Support for the full JavaScript language
Guarantees full interposition

Contract rewriting extending results by results from
Brzozowski and Antimirov to reduce memory consumption

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 24 / 25

Conclusion

Effect logging and dynamic enforcement of access contracts
with proxies

Shortcomings of previous, translation-based implementation
avoided

Support for the full JavaScript language
Guarantees full interposition

Contract rewriting extending results by results from
Brzozowski and Antimirov to reduce memory consumption

Practical applicability of access permission contracts

Runtime overhead of of pure contract enforcement is
negligible

Full effect logging incurs some overhead

Primarily used for program understanding and debugging

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 24 / 25

Efficient Dynamic Access Analysis

Using JavaScript Proxies

Questions?

Thank you for your attention.

Matthias Keil, Peter Thiemann Dynamic Access Analysis October 28, 2013 25 / 25

	Motivation
	Introduction
	Effects for JavaScript
	The JSConTest2 Approach
	Reduction
	Implementation
	Evaluation

