

Extended Regular Expressions

Definition

$r, s, t := \epsilon | A | r+s | r \cdot s | r^* | r \& s | !r$

- $\blacksquare\ \Sigma$ is a potentially infinite set of symbols
- $A, B, C \subseteq \Sigma$ range over sets of symbols
- $\llbracket r \rrbracket \subseteq \Sigma^*$ is the language of a regular expression r, where $\llbracket A \rrbracket = A$

 Image: Matthias Kell, Peter Thiemann
 Regular Expression Inequalities
 December 15, 2014
 2 / 21

Notizen

Notizen

UNI FREIBURG

Notizen

 Hatthias Keil, Peter Thiemann
 Regular Expression Inequalities
 December 15, 2014
 3 / 21

Antimirov's Algorithm

UNI FREIBURG

Notizen

Notizen

Deciding containment for basic regular expressions

- Based on derivatives and expression rewriting
- Avoid the construction of an automaton
- $\partial_a(r)$ computes a regular expression for $a^{-1}[r]$ (Brzozowski) with $u \in \llbracket r \rrbracket$ iff $\epsilon \in \llbracket \partial_u(r) \rrbracket$

Lemma

For regular expressions r and s,

 $r \sqsubseteq s \Leftrightarrow (\forall u \in \Sigma^*) \ \partial_u(r) \sqsubseteq \partial_u(s).$

 Matthias Keil, Peter Thiemann
 Regular Expression Inequalities
 December 15, 2014
 4 / 21

Notizen

(□)</

Problems

- Antimirov's algorithm only works with basic regular expressions or requires a finite alphabet
- Extension of *partial derivatives* (Caron et al.) that computes an NFA from an extended regular expression
- \blacksquare Works on sets of sets of expressions
- Computing derivatives becomes more expensive

 سابله المعالي المعال المعالي معالي معالي المعالي معالي معالي المعالي معالي معالي معالي معالي معالي معالي معالي المعالي معالي المعالي معالي م معالي معالي معالي معالي معالي معالي معالي معالي مع

Goal

Solution

• Algorithm for deciding $\llbracket r \rrbracket \subseteq \llbracket s \rrbracket$ quickly

- Handle extended regular expressions
- Deal effectively with very large (or infinite) alphabets (e.g. Unicode character set)

Require finitely many atoms, even if the alphabet is infinite

Compute derivatives with respect to literals

 Representing Sets of Symbols

 A literal is a set of symbols $A \subseteq \Sigma$

 Definition

 A is an element of an *effective* boolean algebra $(U, \sqcup, \sqcap, \neg, \bot, \top)$ where $U \subseteq \wp(\Sigma)$ is closed under the boolean operations.

 • For finite (small) alphabets: $U = \wp(\Sigma), A \subseteq \Sigma$

 • For infinite (or just too large) alphabets: $U = \{A \in \wp(\Sigma) \mid A \text{ finite } \lor A \text{ finite}\}$

 • Second-level regular expressions: $\Sigma \subseteq \wp(\Gamma^*)$ with $U = \{A \subseteq \wp(\Gamma^*) \mid A \text{ is regular}\}$

 • Formulas drawn from a first-order theory over alphabets

For example, [a-z] represented by $x \ge a \land x \le z$

 + □ > + ∅ > + ℓ ≥ > + ≥ | ≈ + 𝔅 ≥ > + ≥ | ≈ + 𝔅 ≥

 Matthias Keil, Peter Thiemann
 Regular Expression Inequalities

 December 15, 2014
 9 / 21

Notizen

Notizen

BURG

32

Derivatives with respect to Literals

- Definition for $\partial_A(r)$?
- $\partial_a(r)$ computes a regular expression for $a^{-1}[r]$ (Brzozowski)

Desired property

$$\llbracket \partial_A(r) \rrbracket \stackrel{\ell}{=} A^{-1}\llbracket r \rrbracket = \bigcup_{a \in A} a^{-1}\llbracket r \rrbracket = \bigcup_{a \in A} \llbracket \partial_a(r) \rrbracket$$

 ساب من المعالي الم المعالي المعالية المعالي م المعالي معالي المعالي المعال المعالي معالي المعالي معالي معالي معالي معالي معالي معالي معالي م

Notizen

Notizen

Positive and Negative Derivatives	BURG
 Extends Brzozowski's derivative operator to sets of symbol Defined by induction and flip on the complement operator 	s.
Definition	
From $\partial_a(!s) = !\partial_a(s)$, define:	
$\delta^+_A(!r) := !\delta^A(r) \qquad \qquad \delta^A(!r) := !\delta^+_A(r)$	
Lemma	

For any regular expression r and literal A, $\llbracket \delta_A^-(r) \rrbracket \subseteq \bigcap_{a \in A} \llbracket \partial_a(r) \rrbracket$ $\llbracket \delta^+_A(r) \rrbracket \supseteq \bigcup \llbracket \partial_a(r) \rrbracket$ a∈A

 Matthias Keil, Peter Thiemann
 Regular Expression Inequalities
 December 15, 2014
 13 / 21

Notizen

Notizen

Next Literals	BURG
$\begin{array}{llllllllllllllllllllllllllllllllllll$	FRE
Definition	
Let \mathfrak{L}_1 and \mathfrak{L}_2 be two sets of disjoint literals. $\mathfrak{L}_1 \Join \mathfrak{L}_2 :=$ $\{(A_1 \sqcap A_2), (A_1 \sqcap \square \mathfrak{L}_2), (\square \mathfrak{L}_1 \sqcap A_2) \mid A_1 \in \mathfrak{L}_1, A_2 \in \mathfrak{L}_2\}$	
Matthias Keil, Peter Thiemann Regular Expression Inequalities December 15, 2014 16 / 21	

No	tiz	en

Notizen

Notizen

Next Literals of an Inequality

UNI FREIBURG

• Next literal of next($r \sqsubseteq s$)

Definition

- Sound to join literals of both sides $next(r) \bowtie next(s)$ Contains also symbols from *s*
- First symbols of r are sufficient to prove containment

Let \mathfrak{L}_1 and \mathfrak{L}_2 be two sets of disjoint literals.

 $\mathfrak{L}_1 \ltimes \mathfrak{L}_2 := \{ (A_1 \sqcap A_2), (A_1 \sqcap \boxed{\begin{bmatrix} \mathfrak{L}_2 \\ \hline \begin{bmatrix} \mathfrak{L}_2 \\ \hline \begin{bmatrix} \mathfrak{L}_1 \sqcap \mathcal{L}_2 \\ \mathcal{L}_2 \\ \hline \begin{bmatrix} \mathfrak{L}_1 \sqcap \mathcal{L}_2 \\ \mathcal{L}_2 \\ \hline \begin{bmatrix} \mathfrak{L}_1 \sqcap \mathcal{L}_2 \\ \mathcal{L}_2 \\ \mathcal{L}_2 \\ \hline \begin{bmatrix} \mathfrak{L}_2 \\ \mathcal{L}_2 \\ \mathcal{L}_$

Left-based join corresponds to next(r&(!s)).

Definition			
Let $r \sqsubseteq s$ be an inequa	lity, define: $next(r \sqsubseteq s)$:=	$= \operatorname{next}(r) \ltimes \operatorname{next}(r)$	(s)
	()	(人間) くさとくさと 注	= O < (*
Matthias Keil, Peter Thiemann	Regular Expression Inequalities	December 15, 2014	19 / 21

 Keil, Peter Thiemann
 Regular Expression Inequalities
 December 15, 2014
 20 / 21

Conclusion

- UNI FREIBURG
- Generalize Brzozowski's derivative operator
- Extend Antimirov's algorithm for proving containment
- Provides a symbolic decision procedure that works with extended regular expressions on infinite alphabets
- Literals drawn from an effective boolean algebra
- Main contribution is to identify a finite set that covers all possibilities

Notizen

Notizen

Notizen

 Hatthias Keil, Peter Thiemann
 Regular Expression Inequalities
 December 15, 2014
 21 / 21

The nullable predicate $\nu(r)$ indicates whether $[\![r]\!]$ contains the empty word, that is, $\nu(r)$ iff $\epsilon \in [\![r]\!]$.

$\nu(\epsilon)$	=	true
$\nu(A)$	=	false
$\nu(r+s)$	=	$\nu(r) \lor \nu(s)$
$\nu(r \cdot s)$	=	$\nu(r) \wedge \nu(s)$
$\nu(r^*)$	=	true
$\nu(r\&s)$	=	$\nu(r) \wedge \nu(s)$
$\nu(!r)$	=	$\neg \nu(r)$

 Image: Matthias Kell, Peter Thiemann
 Regular Expression Inequalities
 December 15, 2014
 2 / 13

Brzozowski Derivatives

 $\partial_a(r)$ computes a regular expression for the left quotient $a^{-1}[\![r]\!]$.

 $\partial_a(\epsilon) = \emptyset$ $\partial_a(A) = \begin{cases} \epsilon, & a \in A \\ \emptyset, & a \notin A \end{cases}$ $\partial_a(r+s) = \partial_a(r) + \partial_a(s)$ $\partial_a(r \cdot s) = \begin{cases} \partial_a(r) \cdot s + \partial_a(s), & \nu(r) \\ \partial_a(r) \cdot s, & \neg \nu(r) \end{cases}$ $\neg \nu(r)$ $\begin{array}{l} \left(\partial_a(r) \cdot s, \\ \partial_a(r^*) &= \partial_a(r) \cdot r^* \\ \partial_a(r\&s) &= \partial_a(r)\& \partial_a(s) \\ \partial_a(!r) &= !\partial_a(r) \end{array} \right)$

 Matthias Keil, Peter Thiemann
 Regular Expression Inequalities
 December 15, 2014
 3 / 13

Notizen

Notizen

Notizen

UNI FREIBURG

First Symbols	BURG
Let $first(r) := \{a \mid aw \in [\![r]\!]\}$ be the set of first symbols derivable from regular expression r .	FRE
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	

$first(r \cdot s)$	_	$\int first(r) \cup first(s),$	$\nu(r)$
		first(r),	$\neg \nu(r)$
$first(r^*)$	=	first(r)	
first(r&s)	=	$first(r) \cap first(s)$	
first(!r)	=	$\Sigma \setminus \{a \in first(r) \mid \partial_i\}$	$_{a}(r) \neq \Sigma^{*}$

First Literals	1	BURG
Let $first(r) := \{a \mid aw \in [\![r]\!]\}$ be the set of first symbols derivable from regular expression r .		FREI
$ iteral(\epsilon) = \emptyset$		

literal(A)	=	{ <i>A</i> }	
literal(r+s)	=	$ iteral(r) \cup iteral(s) $	
$literal(r \cdot s)$	=	$\begin{cases} literal(r) \cup literal(s), \\ literal(r), \end{cases}$	u(r) = u(r)
literal(r*)	=	literal(r)	
literal(<i>r&s</i>)	=	$ iteral(r) \cap iteral(s) $	
literal(!r)	=	$\Sigma \sqcap \bigsqcup \{A \in literal(r) \mid c$	$\partial_A(r) = \Sigma^*$

 Matthias Keil, Peter Thiemann
 Regular Expression Inequalities
 December 15, 2014
 5 / 13

Notizen

Notizen

Notizen

 Matthias Keil, Peter Thiemann
 Regular Expression Inequalities
 December 15, 2014
 6 / 13

Termination	BURG
	N.S.
Theorem (Finiteness)	
Let R be a finite set of regular inequalities. Define	
$F(R) = R \cup \{\partial_A(r \sqsubseteq s) \mid r \sqsubseteq s \in R, A \in next(r \sqsubseteq s)\}$	
For each r and s , the set $\bigcup_{i\in\mathbb{N}}F^{(i)}(\{r\sqsubseteq s\})$ is finite.	

		 < 2> < 2> < 2> < 2 	= nac
Matthias Keil, Peter Thiemann	Regular Expression Inequalities	December 15, 2014	7 / 13

 $\frac{\nu(s)}{\Gamma \vdash \epsilon \sqsubseteq s : true}$

 $(DISPROVE-EMPTY) \\ \exists A \in next(r) : A \neq \emptyset$ $\Gamma \vdash r \sqsubseteq \emptyset$: false

Notizen

Notizen

Notizen

 Matthias Keil, Peter Thiemann
 Regular Expression Inequalities
 December 15, 2014
 9 / 13

Soundness	BURG
Theorem (Soundness)	NN
For all regular expression r and s:	
$\emptyset \vdash r \dot{\sqsubseteq} s \ : \ \top \ \Leftrightarrow \ r \sqsubseteq s$	

		- 저렴 돈 시 돈 돈 귀 귀	E 9 9 9 9
Matthias Keil, Peter Thiemann	Regular Expression Inequalities	December 15, 2014	10 / 13

 Matthias Keil, Peter Thiemann
 Regular Expression Inequalities
 December 15, 2014
 12 / 13

Notizen

Notizen

Incomplete Containment	BURG
	FRE
Conjecture	
$r \sqsubseteq s \leftarrow (\nu(r) \Rightarrow \nu(s)) \land (\forall A \in literal(r)) \delta^+_A(r) \sqsubseteq \delta^A(s)$	

ال المعالي المع معالي المعالي ا Notizen

_

_

Notizen

Notizen

_

_

_