
\qquad
\qquad
\qquad

Notizen

\qquad

- Even $=$ flat $(\lambda x \cdot x \% 2=0)$
- Odd $=$ flat $(\lambda x \cdot x \% 2=1)$

Assertion (Even \rightarrow Even)

Let add2Even $=((\lambda x . x+2) @($ Even \rightarrow Even $))$ Let add2Even $=$ $((\lambda x . x+2)$ @ (Even \rightarrow Even $))$ Let add2Even $=((\lambda x \cdot x+2)$ @ (Even \rightarrow Even))

- (add2Even 2$) \longrightarrow * 4 \checkmark$
- (add2Even 1) $\longrightarrow{ }^{*} X$ blame context $\square 1$

Assertion (Odd \rightarrow Odd)

Let add2Odd $=((\lambda x . x+2) @($ Odd \rightarrow Odd $))$ Let add2Odd $=$ $((\lambda x \cdot x+2) @(O d d \rightarrow$ Odd $))$ Let add2Odd $=((\lambda x \cdot x+2)$ @ (Odd \rightarrow Odd))

Notizen

Observation

\qquad

- $\lambda x \cdot x+2$ works for even and odd arguments
- $\lambda x \cdot x+2$ fulfills Odd \rightarrow Odd and Even \rightarrow Even
- How can we express that with a single contract?

Intersection Contract!

Notizen

Intersection Type

- $V: S \cap T$
- Models overloading
- Models multiple inheritances

Union Type

- $V: S \cup T$
- Dual of intersection type
- Domain of overloaded functions

Roman Keil, Peter Thiemann September $2,2015 \quad 4 / 17$

Notizen

\qquad
\qquad

- Extend higher-order contracts with intersection and union
- Specification based on the type theoretic construction

Assertion (Even \rightarrow Even) $\cap($ Odd \rightarrow Odd $)$

Let add2 $=((\lambda x . x+2) @($ Even \rightarrow Even $) \cap($ Odd \rightarrow Odd $))$

- (add2 2) $\longrightarrow^{*} 4 \checkmark$

■ (add2 1) $\longrightarrow^{*} 3 \checkmark$
No blame because of the intersection contract!

Roman Keil, Peter Thiemann
September $2,2015 \quad \begin{gathered}\text { nacc } \\ 5 / 17\end{gathered}$

- Even $=$ flat $(\lambda x \cdot x \% 2=0)$
- Odd $=$ flat $(\lambda x . x \% 2=1)$
- Pos $=$ flat $(\lambda x \cdot x>0)$

Examples

- Pos \cap Even

Flat Contract

- $\operatorname{flat}(\lambda x . P) \cap$ flat $(\lambda x . Q) \equiv \operatorname{flat}(\lambda x . P \wedge Q)$

Notizen

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notizen

\qquad

Assertion

Let add $1=((\lambda x \cdot x+1) @($ Even \rightarrow Even $) \cap($ Pos \rightarrow Pos $))$ Let add1 $=((\lambda x . x+1)$ @ (Even \rightarrow Even $) \cap($ Pos \rightarrow Pos $))$ Let add1 $=((\lambda x . x+1)$ @ (Even \rightarrow Even $) \cap($ Pos \rightarrow Pos $))$ Let add $1=$ $((\lambda x . x+1) @($ Even \rightarrow Even $) \cap($ Pos \rightarrow Pos $))$

- (add1 3) $\longrightarrow^{*} 4 \checkmark$
- (add1 -1$) \longrightarrow \longrightarrow^{*} X$ blame context $\square-1$
- (add1 2$) \longrightarrow{ }^{*} X$ blame subject $(\lambda x \cdot x+1)$

Definition

- Context gets blamed for $\mathcal{C} \cap \mathcal{D}$ iff: (Context gets blamed for $\mathcal{C}) \wedge($ Context gets blamed for $\mathcal{D})$
- Subject M gets blamed for $\mathcal{C} \cap \mathcal{D}$ iff:
 7/17

Notizen

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Reduction Relation

$$
\varsigma, M \longrightarrow \varsigma^{\prime}, N
$$

- M, N expressions
- ς list of constraints
- One constraint for each contract operator \rightarrow, \cap, \cup
- One constraint for each flat contract
- Blame calculation from a list of constraints

Notizen

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notizen

\qquad
\qquad

Evaluation Rule

$\frac{\text { FLat }}{M V \longrightarrow^{*} W \quad \varsigma^{\prime}=b \triangleleft(W): \varsigma}$
$\varsigma, E\left[V @^{b}\right.$ flat $\left.(M)\right] \longrightarrow \varsigma^{\prime}, E[V]$

Notizen

\qquad
\qquad

Interpretation of a constraint list

$$
\mu \in((b) \times\{\text { subject, context }\}) \rightarrow \mathbb{B}
$$

- An interpretation μ is a mapping from blame label b to records of elements of $\mathbb{B}=\{t, f\}$, order $t \sqsubset f$
- Ordering reflects gathering of information with each execution step
- Each blame label b is associated with two truth values, b.subject and b.context

```
Roman Keil, Peter Thiemann
September 2, \(2015 \quad 11 / 17\)
```


Evaluation Rule

$$
\frac{\stackrel{\text { Flat }}{M V} \longrightarrow^{*} W \quad \varsigma^{\prime}=b \measuredangle(W): \varsigma}{\varsigma, E\left[V @^{b} \text { flat }(M)\right] \longrightarrow \varsigma^{\prime}, E[V]}
$$

Notizen

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$\underline{\mu(\text { b. subject }) \sqsupseteq W \quad \mu(b . \text { context }) \sqsupseteq \mathrm{t}}$
$\mu \models b \triangleleft W$

Notizen
\qquad
\qquad

Definition

ς is a blame state if there exists a top-level blame label such that
$\mu(b$. subject $) \sqsupseteq \mathrm{f} \vee \mu(b$. context $) \sqsupseteq \mathrm{f}$

■ Evaluation stops if a blame state is reached.

Roman Keil, Peter Thiemann

Evaluation Rule

$$
\begin{aligned}
& \text { Function } b_{1}, b_{2} \notin \varsigma \quad \varsigma^{\prime}=b \triangleleft\left(b_{1} \rightarrow b_{2}\right): \varsigma \\
& \varsigma, E\left[\left(V @^{b}(\mathcal{C} \rightarrow \mathcal{D})\right) W\right] \longrightarrow \varsigma^{\prime}, E\left[\left(V\left(W @^{p_{1}} \mathcal{C}\right)\right) @^{b_{2}} \mathcal{D}\right]
\end{aligned}
$$

Constraint Satisfaction

C-Function

$\mu(b$. subject $) \sqsupseteq \mu\left(b_{1}\right.$. context $\wedge\left(b_{1}\right.$. subject $\Rightarrow b_{2}$. subject $\left.)\right)$
$\mu(b$.context $) \sqsupseteq \mu\left(b_{1}\right.$. subject $\wedge b_{2}$.context $)$

Roman Keil, Peter Thiemann
September 2, 2015 14/17

Evaluation Rule

> Intersection $\frac{b_{1}, b_{2} \notin \varsigma \quad \varsigma^{\prime}=b \triangleleft\left(b_{1} \cap b_{2}\right): \varsigma}{\varsigma, E\left[\left(V @^{\prime}(Q \cap R)\right) W\right] \longrightarrow \varsigma^{\prime}, E\left[\left(\left(V @^{b_{1}} Q\right) @^{b_{2}} R\right) W\right]}$

Constraint Satisfaction

C-Intersection $\mu(\mathrm{b}$. subject $) \sqsupseteq \mu\left(b_{1}\right.$. subject $\wedge b_{2}$.subject $)$ $\mu($ (.context $) \sqsupseteq \mu\left(D_{1}\right.$.context $\vee D_{2}$. context $)$

Notizen

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notizen

\qquad
\qquad
\qquad

- Dual of intersection contract
- Exchange \wedge and \vee in the blame calculation
- Delayed evaluation changes to an immediate evaluation

Notizen

\qquad
\qquad

Technical Results

- Contract Rewriting
- Deterministic and nondeterministic specification of contract monitoring
- Denotational specification of the semantics of contracts
- Theorems for contract and blame soundness

Roman Keil, Peter Thiemann

Notizen

\qquad
\qquad

- Intersection and union contracts provide dynamic guarantees equivalent to their type-theoretic counterparts
- Constraint-based blame calculation enables higher-order contracts with unrestricted intersection and union
■ Formal basis of TreatJS, a language embedded, higher-order contract system implemented for JavaScript
\qquad
\qquad
\qquad
\qquad
\qquad
Constraint Graph
(t, t

Reduction
$\left((\lambda x . x+1) @^{b}((\right.$ Even \rightarrow Even $) \cap($ Pos \rightarrow Pos $\left.))\right) 0$
- $\longrightarrow \mathrm{b} \boldsymbol{\text { (}}$ ($\left.{ }_{1} \cap b_{2}\right)$
Roman Keil. Peeter Thieman il abi ir ran abn in ${ }_{\text {September } 2,2015}{ }^{n} n_{1 / 11}$
- $\longrightarrow b_{2} \boldsymbol{4}\left(b_{3} \rightarrow b_{4}\right)$
$\left(\left((\lambda x . x+1) @^{p_{1}}(\right.\right.$ Even \rightarrow Even $\left.)\right)\left(0 @^{\emptyset_{3}}\right.$ Pos $\left.)\right) @^{b_{4}}$ Pos
- $\longrightarrow b_{3}$ (false)
$\left(\left((\lambda x . x+1) @^{b_{1}}(\right.\right.$ Even \rightarrow Even $\left.\left.)\right) 0\right) @^{b_{4}}$ Pos
- $\longrightarrow b_{1}$ ($\left(b_{5} \rightarrow b_{6}\right):$
$\left(\left((\lambda x \cdot x+1)\left(0 @^{b_{5}}\right.\right.\right.$ Even)) @ @ ${ }^{b_{6}}$ Even) @ ${ }^{b_{4}}$ Pos
- $\longrightarrow \mathrm{b}_{5}$ (true)
$\left(((\lambda x . x+1) 0) @^{b_{6}}\right.$ Even) @ ${ }^{b_{4}}$ Pos
Intersection and Union Types
- $\lambda x \cdot x+2:$ Even \rightarrow Even
- $\lambda x \cdot x+2:$ Odd \rightarrow Odd
- $\lambda x \cdot x+2:$ Even \rightarrow Even \cap Odd \rightarrow Odd

Union Type

- $\lambda x . x-2$: Even \rightarrow Even
- $\lambda x . x-2:$ Even \rightarrow Even \cup Pos \rightarrow Pos
September $2,2015 \quad 2 / 11$

Notizen

Notizen
\qquad
\qquad

Notizen

\qquad

- Pos $=$ flat $(\lambda x \cdot x>0)$
- Even $=$ flat $(\lambda x . x \% 2=0)$

Assertion
 - 1@Pos $\longrightarrow 1 \checkmark$
 - 0@Pos $\longrightarrow \boldsymbol{X}$ blame subject 0
 Definition
 - Subject V gets blamed for Flat Contract flat (M) iff: $(M V) \longrightarrow^{*}$ false

- Even \rightarrow Even

Assertion

■ (($\lambda x \cdot x+1)$ @Even \rightarrow Even $) 1 \longrightarrow^{*} \boldsymbol{x}$ blame context $\square 1$

- (($\lambda x \cdot x+1)$ @ Even \rightarrow Even $) 2 \longrightarrow^{*} X$ blame subject

Definition

- Context gets blamed for $\mathcal{C} \rightarrow \mathcal{D}$ iff: Argument x gets blamed for \mathcal{C} (as subject)
- Subject M gets blamed for $\mathcal{C} \rightarrow \mathcal{D}$ at $\square V$ iff: $\neg($ Context gets blamed $\mathcal{C}) \wedge(M \vee$ gets blamed $\mathcal{D})$

Roman Keil, Peter Thiemann September $2,2015 \quad 4 / 11$

Notizen

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Assertion

Let $\bmod 3=\left(\left(\lambda x . x^{\%} \% 3\right)\right.$ @ (Even \rightarrow Even $) \cup($ Pos \rightarrow Pos $\left.)\right)$ Let $\bmod 3=((\lambda x . x \% 3) @($ Even \rightarrow Even $) \cup($ Pos \rightarrow Pos $))$ Let mod3 $=((\lambda x . x \% 3)$ @ (Even \rightarrow Even $) \cup($ Pos \rightarrow Pos $))$ Let mod3 $=$ $((\lambda x . x \% 3)$ @ (Even \rightarrow Even $) \cup($ Pos \rightarrow Pos $))$

- (mod3 4$) \longrightarrow \longrightarrow^{*} 1 \checkmark$
- $(\bmod 31) \longrightarrow^{*} X$ blame context $\square 1$
- $(\bmod 36) \longrightarrow^{*} X$ blame subject $\left(\lambda x . x^{\%} \%\right)$

Definition

- Context gets blamed for $\mathcal{C} \cup \mathcal{D}$ iff:
(Context gets blamed for $\mathcal{C}) \vee($ Context gets blamed for $\mathcal{D})$
- Subject M gets blamed for $\mathcal{C} \cup \mathcal{D}$ iff:

Examples

- Odd \cup Even

Flat Contract

- $\operatorname{flat}(\lambda x . P) \cup \operatorname{flat}(\lambda x . Q) \equiv \operatorname{flat}(\lambda x . P \vee Q)$

Notizen

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notizen

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
年

Notizen
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Roman Keil, Peter Thiemann September 2, 2015 7/11

Notizen

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

September 2, $20158 / 11$
Union Contract

Evaluation Rule

$$
\begin{aligned}
& \text { Union } \\
& \stackrel{b_{1}, b_{2} \notin \varsigma \quad \varsigma^{\prime}=b \triangleleft\left(b_{1} \cup b_{2}\right): \varsigma}{\left.\varsigma @^{b}(\mathcal{C} \cup \mathcal{D})\right] \longrightarrow \varsigma^{\prime}, E\left[\left(V @^{b_{1}} \mathcal{C}\right) @^{b_{2}} \mathcal{D}\right]}
\end{aligned}
$$

Constraint Satisfaction

C-Union
$\mu(b$. subject $) \sqsupseteq \mu\left(b_{1}\right.$. subject $\vee b_{2}$.subject $)$ $\mu($ (.context $) \sqsupseteq \mu\left(D_{1}\right.$.context $\wedge b_{2}$. context $)$ $\mu \models b \longleftarrow b_{1} \cup b_{2}$

Notizen
\qquad
\qquad

Definition

\qquad
ς is a blame state if there exists a top-level blame identifier such that
$\mu(b$. subject $) \sqsupseteq \mathrm{f} \vee \mu($ b.context $) \sqsupseteq \mathrm{f}$

$$
\frac{\begin{array}{c}
\varsigma, M \longrightarrow{ }^{*} \varsigma^{\prime}, N
\end{array}}{\substack{ \\
\varsigma \text { is not a blame state }}} \quad \begin{aligned}
& \varsigma, M \longmapsto \varsigma^{\prime}, N
\end{aligned} \quad \begin{aligned}
& \varsigma \text { is blame state for } b \\
& \varsigma, M \longmapsto \varsigma, \text { blame }{ }^{b}
\end{aligned}
$$

Roman Keil, Peter Thiemann
September 2, 2015 10/11

Notizen

\qquad
\qquad
\qquad
\qquad
\qquad

Notizen

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

Notizen
\qquad
\qquad

Definition (Contract Satisfaction)

The semantics of a contract \mathcal{C} defines
【 a set $\llbracket \mathcal{C} \rrbracket^{+}$of closed terms (subjects) that satisfy \mathcal{C}
[a set $\llbracket \mathcal{C} \rrbracket^{-}$of closed contexts that respect \mathcal{C}
The definition is mutually inductive on the structure of \mathcal{C}.

Roman Keil, Peter Thiemann

Notizen

\qquad
\qquad

Theorem (Contract soundness for expressions)
For all M, \mathcal{C}, b. $M @^{\circ} \mathcal{C} \in \llbracket \mathcal{C} \rrbracket^{+}$
Theorem (Contract soundness for contexts)
For all $\mathcal{L}, \mathcal{C}, b, \mathcal{L}\left[\square @^{b} \mathcal{C}\right] \in \llbracket \mathcal{C} \rrbracket$

Roman Keli, Peter Thiemann

Notizen

\qquad
\qquad

Theorem (Subject blame soundness)

Suppose that $M \in \llbracket \mathbb{C} \rrbracket^{+}$
If $\varsigma, E\left[M @^{j} C\right] \longmapsto{ }^{\prime} \varsigma^{\prime}, N$ then $\left.\llbracket \varsigma^{\prime}\right](b$, subject $) \sqsubseteq \mathrm{t}$.

Theorem (Context blame soundness)

Suppose that $\mathcal{L} \in \llbracket C \mathbb{C} \rrbracket$
If $\varsigma, \mathcal{L}\left[M @^{b} \mathcal{C}\right] \longmapsto \varsigma^{*}, N$, then $\llbracket \varsigma^{s^{\prime}} \rrbracket(b$, context $) \sqsubseteq \mathrm{t}$.

