Transparent Object Proxies for JavaScript

UNI
FREIBURG

Matthias Keil*, Omer Farooq', Sankha Narayan Guria?, Andreas Schlegel®,
Manuel Geffken®, Peter Thiemann®
LUniversity of Freiburg, Germany, ?Indian Institute of Technology Jodhpur, India

February 24, 2016, Software Engineering-Konferenz, SE 2016
Vienna, Austria

Motivation

UNI
FREIBURG

92.8 %

of all web sites use JavaScript!

m Most important client-side language for web sites

m JavaScript programs are composed of third-party libraries
(e.g. for calendars, maps, social networks)

*according to http://w3techs.com/, status of February 2016
Keil et al Transparent Object Proxies February 24,2016 2/ 18

JavaScript Issues

UNI
FREIBURG

m Executed code is a mix from different origins

m Code is accumulated by dynamic loading
(e.g. eval, mashups)

m JavaScript has no security awareness

Side effects may cause unexpected behavior
Program understanding and maintenance is difficult

Libraries may get access to sensitive data

Keil et al. Transparent Object Proxies February 24,2016 3 /18

Notizen

Notizen

Notizen

http://w3techs.com/

Challanges of JavaScript Developers

UNI
FREIBURG

m All-or-nothing choice when including code

m Some scripts must have access the application state or are
allowed to change it

m Some JavaScript fragments are ill-behaved

Key Challenges

Manage untrusted JavaScript Code
Control the use of data by included scripts
Reason about effects of included scripts

Keil et al. Transparent Object Proxies February 24,2016 4 /18

Possible Solutions

UNI
FREIBURG

CONTRACTS with RUN-TIME MONITORING

m Behavioral Contracts
Assertions, pre-/postconditions, higher-order contracts
[Findler & Felleisen 2002] [Keil & Thiemann 2015]
m Access Permission Contracts
Monitor and control access paths
[Keil & Thiemann 2013]
m Security Policies
Monitor and enforce object behavior
[Agten et al. 2012]
u Preserve Integrity
Membranes, Revocable References
[Van Cutsem & Miller 2010]

Keil et al Transparent Object Proxies February 24,2016 5 /18

Implementation of Contracts: JavaScript Proxies
[Keil & Thiemann 2015]

UNI
FREIBURG

Handler.get(Target, 'x’, Proxy);
Handler.set(Target, 'y’, 1, Proxy);

Meta-Level

Base-Level

Proxy.x; Target['x'];
Proxy.y=1; Target['y'|=1;

Keil et al. Transparent Object Proxies February 24,2016 6/ 18

Notizen

Notizen

Notizen

Notizen

The Twist

UNI
FREIBURG

A Maintenance Scenario

m A programmer adds contracts to sensitive objects
(e.g. to the arguments of a function)

m Program execution ends up in a mix of objects with and
without contract

m The same object may appear with and without contract

m The original object may be compared with its contracted
counterpart (e.g. by using ===

m What happens?

Keil et al. Transparent Object Proxies February 24,2016 7 /18

Notizen
2
Opaque Proxies 2
55~
1
Proxies and Equality
1 var target = { }
2 var contracted = new Proxy (target, contractHand/er),‘
3
4 target = contracted
If a program uses object equality, then adding contracts may
change the behaviour of well-behaved programs
Keil et al. Transparent Object Proxies February 24, 2016 8 /18
Notizen
g
Does this happen in practice? 2
5"
Sf

Research Question 1

Does the contract implementation based on opaque proxies affect

the meaning of realistic programs?

The Experiment

m Instrument the JavaScript engine to count and classify
proxy-object comparisons

m Subject programs are taken from the Google Octane 2.0
Benchmark Suite

m Recursive object wrapper simulates a simple contract system
by wrapping the arguments of a function

m |dentity preserving membrane M maintains aliasing:
M(tl) =4 M(tz) =t # ty

Keil et al. Transparent Object Proxies February 24,2016 9 /18

Classification of Proxy-Object Comparisons

l-a. If t; # t, then result should be false.
Same result for all implementations.

I-b. If t; = tp, then result should be true.
False with JS proxies

Type II: M(t) = M(t2)

Il-a. If t; # t», then result should be false.
Same result for all implementations.
Il-b. If t; = tp, then result should be true.
May be false with JS proxies if membrane not identity
preserving
Keil et al.

Transparent Object Proxies February 24, 2016

Numbers of Comparisons involving Proxies

10/ 18

Type-| Type-ll
Benchmark 2 ‘ Total ‘ l-a | I-b Il-a 1l-b
DeltaBlue 144126 | 29228 1411 33789 79698
RayTrace 1075606 0 0 | 722703 | 352903
EarleyBoyer 87211 8651 6303 | 53389 18868
TypeScript 801436 | 599894 | 151297 | 20500 29745

Yes, it happens! A significant number of object comparisons fail
when mixing opaque proxies and their target objects.

2The remaining benchmarks don't do any proxy-object. comparisons.

Keil et al Transparent Object Proxies February 24, 2016

Transparent Proxies

Transparent Proxies

When comparing two objects for equality, a transparent proxy is
(recursively) replaced by its target object.

Suggested Use

m Implement projections, e.g. projection contracts
m Contracts become invisible

Keil et al. Transparent Object Proxies February 24, 2016

11/18

12/18

Notizen

UNI
FREIBURG

Notizen

UNI
FREIBURG

Notizen

UNI
FREIBURG

Performance

UNI
FREIBURG

Research Question 2

Does the introduction of the transparent proxies affect the
performance of non-proxy code?

The Testing Procedure

Google Octane 2.0 Benchmark Suite
lonMonkey turned off / baseline JIT turned off

One run in each configuration

Scores: Bigger is better

Keil et al.

Scores

Transparent Object Proxies February 24, 2016

Origin Transparent
Benchmark || JIT | Interpreter | JIT | Interpreter
DeltaBlue 453 82.5 466 79.6
RayTrace 462 182 462 174
EarleyBoyer 909 275 913 270
TypeScript 3708 1241 || 3666 1203
Total Score || 1594 | 456 || 1610 | 445

13/18

UNI
FREIBURG

Answer

There is no measurable difference. The difference is within
the range of measurement accuracy.

Th

Tran

Keil et al.

e User Level
sparent Proxy

Transparent Object Proxies February 24, 2016

14/18

UNI
FREIBURG

Just a new Proxy Constructor

1 var proxy = new TransparentProxy (target, handler);
2 proxy === target

m Transparent proxies are slippery!

m Library code may want to break the transparency
(e.g. for efficiency reasons)

m Hard to manipulate because they have no identity

Keil et al.

Transparent Object Proxies February 24, 2016

15 /18

Notizen

Notizen

Notizen

1

2

Notizen

The User Level

Identity Realms

UNI
FREIBURG

m Consists of a constructor for transparent proxies
m Provides an equals function revealing proxies of that realm

m Provides constructors for realm-aware data structures
(e.g. Map, Set, WeakMap, WeakSet)

Identity Realm

var realm = TransparentProxy.createRealm();
var proxy = realm.Proxy (target, handler);

proxy === target;
realm.equals(proxy, target);

Keil et al Transparent Object Proxies February 24,2016 16 / 18

Notizen

In the Paper

UNI
FREIBURG

m Discussion of different use cases of proxies with respect to
the requirements on proxy transparency
m Discussion of the programmer’s expectations from an

equality operator
m Discussion of alternative designs to obtain transparency

m Two different APIs for creating transparent proxies

m Draft implementation of an observer proxy that guarantee

projection contracts

Keil et al Transparent Object Proxies February 24,2016 17 /18

Notizen

Conclusion

UNI
FREIBURG

m A significant number of object comparisons fail when mixing

opaque proxies and their target objects
m Implementing contract systems with opaque proxies changes

the semantics of contract-abiding programs
m Transparent proxies are a viable alternative
m Neither the transparent nor the opaque implementation is

appropriate for all use cases
m To preserve programmer expectations, transparent proxies

should be used as observer proxies
(cf. Chaperones vs. Impersonators in Racket)

Keil et al. Transparent Object Proxies February 24,2016 18 / 18

Notizen

The User Level

Maps, Sets, and other Data Structures

UNI
FREIBURG

m Data structures depending on object equality needs to
handle transparent proxies

m If objl==0bj2 then map.get(objl)==map.get(obj2)

Normal Map

1 var realm = TransparentProxy.createRealm();

> var tproxyl = realm.Proxy (target, handler);
3 var tproxy2 = realm.Proxy (target, handler);

1 var map = new Map();
> map.add(tproxyl, 1);

s map.add(tproxy2, 2);

Keil et al. Transparent Object Proxies February 24,2016 1/5

Notizen
The User Level 2
Maps, Sets, and other Data Structures a
z5-
S
Realm-aware Map
1 var realm = TransparentProxy.createRealm();
> var tproxyl = realm.Proxy (target, handler);
3 var tproxy2 = realm.Proxy (target, handler);
1 var map = realm.Map();
> map.add(tproxyl, 1);
s map.add(tproxy2, 2);
Keil et al. Transparent Object Proxies February 24,2016 2 /5
Notizen
[¢]
&
An Example 2
s5-
Sf

Proxies and Equality

m Let x, f, g be some global elements:

1 var x = { ;
2 var f = function (y) { return x===y }

s var g = function (7, x) { return f(x) }

m Let C, D be two contracts implemented by proxies:

1var h =g @ ([(C—> Any), D] —> Any)

m The execution ends up in:

1 new Proxy(x, C_Handler)) === new Proxy(x, D_Handler))

m Execution ends up in false instead of true!

Keil et al. Transparent Object Proxies February 24,2016 3 /5

Notizen

Identity Preserving Membrane
[Van Cutsem & Miller 2010]

UNI
FREIBURG

Keil et al. Transparent Object Proxies February 24, 2016 4/5
Notizen
Origin Transparent
Benchmark H No-lon | No-JIT H No-lon | No-JIT
Richards 505 64.8 509 64.3
DeltaBlue 453 82.5 466 79.6
Crypto 817 111 793 109
RayTrace 462 182 462 174
EarleyBoyer 909 275 913 270
RegExp 853 371 871 365
Splay 802 409 857 409
SplayLatency 1172 1336 1231 1338
NavierStokes 841 155 834 148
pdf.js 2759 704 2793 691
Mandreel 691 82.5 688 78.5
MandreelLatency 3803 526 3829 503
Gameboy Emulator 4275 556 4382 540
Code loading 9063 9439 9114 9502
Box2DWeb 1726 289 1736 282
zlib 28981 29052 28909 29108
TypeScript 3708 1241 3666 1203
Keil et al. Transparent Object Proxies February 24,2016 55

Notizen

	Introduction
	Contract Systems
	The Twist
	Research Question 1

	Transparent Proxies
	Evaluation
	The Proxy API
	Conclusion
	Appendix
	Maps and Sets
	Contract Example
	Identity Preserving Membrane
	Evaluation

