
Transparent Object Proxies for JavaScript

Matthias Keil1, Omer Farooq1, Sankha Narayan Guria2, Andreas Schlegel1,
Manuel Geffken1, Peter Thiemann1

1University of Freiburg, Germany, 2Indian Institute of Technology Jodhpur, India

February 24, 2016, Software Engineering-Konferenz, SE 2016
Vienna, Austria

Motivation

92.8 %
of all web sites use JavaScript1

Most important client-side language for web sites

JavaScript programs are composed of third-party libraries
(e.g. for calendars, maps, social networks)

1according to http://w3techs.com/, status of February 2016

Keil et al. Transparent Object Proxies February 24, 2016 2 / 18

JavaScript Issues

Executed code is a mix from different origins

Code is accumulated by dynamic loading
(e.g. eval, mashups)

JavaScript has no security awareness

Problems

1 Side effects may cause unexpected behavior

2 Program understanding and maintenance is difficult

3 Libraries may get access to sensitive data

Keil et al. Transparent Object Proxies February 24, 2016 3 / 18

Notizen

Notizen

Notizen

http://w3techs.com/


Challanges of JavaScript Developers

All-or-nothing choice when including code

Some scripts must have access the application state or are
allowed to change it

Some JavaScript fragments are ill-behaved

Key Challenges

1 Manage untrusted JavaScript Code

2 Control the use of data by included scripts

3 Reason about effects of included scripts

Keil et al. Transparent Object Proxies February 24, 2016 4 / 18

Possible Solutions

CONTRACTS with RUN-TIME MONITORING

Behavioral Contracts
Assertions, pre-/postconditions, higher-order contracts
[Findler & Felleisen 2002] [Keil & Thiemann 2015]

Access Permission Contracts
Monitor and control access paths
[Keil & Thiemann 2013]

Security Policies
Monitor and enforce object behavior
[Agten et al. 2012]

Preserve Integrity
Membranes, Revocable References
[Van Cutsem & Miller 2010]

Keil et al. Transparent Object Proxies February 24, 2016 5 / 18

Implementation of Contracts: JavaScript Proxies
[Keil & Thiemann 2015]

Handler

Proxy Target Shadow

Proxy.x;
Proxy.y=1;
...

Handler.get(Target, ’x’, Proxy);
Handler.set(Target, ’y’, 1, Proxy);
...

Target[’x’];
Target[’y’]=1;
...

Meta-Level

Base-Level

Keil et al. Transparent Object Proxies February 24, 2016 6 / 18

Notizen

Notizen

Notizen



The Twist

A Maintenance Scenario

A programmer adds contracts to sensitive objects
(e.g. to the arguments of a function)

Program execution ends up in a mix of objects with and
without contract

The same object may appear with and without contract

The original object may be compared with its contracted
counterpart (e.g. by using ===)

What happens?

Keil et al. Transparent Object Proxies February 24, 2016 7 / 18

Opaque Proxies

Proxies and Equality

1 var target = { /∗ some object ∗/ };
2 var contracted = new Proxy (target, contractHandler);
3 // ...
4 target === contracted // evaluates to false

Consequence

If a program uses object equality, then adding contracts may
change the behaviour of well-behaved programs

Keil et al. Transparent Object Proxies February 24, 2016 8 / 18

Does this happen in practice?

Research Question 1

Does the contract implementation based on opaque proxies affect
the meaning of realistic programs?

The Experiment

Instrument the JavaScript engine to count and classify
proxy-object comparisons

Subject programs are taken from the Google Octane 2.0
Benchmark Suite

Recursive object wrapper simulates a simple contract system
by wrapping the arguments of a function

Identity preserving membrane M maintains aliasing:
M(t1) 6= M(t2)⇒ t1 6= t2

Keil et al. Transparent Object Proxies February 24, 2016 9 / 18

Notizen

Notizen

Notizen



Classification of Proxy-Object Comparisons

Type I: M1(t1) = t2 or M1(t1) = M2(t2)

I-a. If t1 6= t2, then result should be false.
Same result for all implementations.

I-b. If t1 = t2, then result should be true.
False with JS proxies

Type II: M(t1) = M(t2)

II-a. If t1 6= t2, then result should be false.
Same result for all implementations.

II-b. If t1 = t2, then result should be true.
May be false with JS proxies if membrane not identity
preserving

Keil et al. Transparent Object Proxies February 24, 2016 10 / 18

Numbers of Comparisons involving Proxies

Type-I Type-II
Benchmark 2 Total I-a I-b II-a II-b

DeltaBlue 144126 29228 1411 33789 79698
RayTrace 1075606 0 0 722703 352903
EarleyBoyer 87211 8651 6303 53389 18868
TypeScript 801436 599894 151297 20500 29745

Result

Yes, it happens! A significant number of object comparisons fail
when mixing opaque proxies and their target objects.

2The remaining benchmarks don’t do any proxy-object comparisons.

Keil et al. Transparent Object Proxies February 24, 2016 11 / 18

Transparent Proxies

Transparent Proxies

When comparing two objects for equality, a transparent proxy is
(recursively) replaced by its target object.

Suggested Use

Implement projections, e.g. projection contracts

Contracts become invisible

Keil et al. Transparent Object Proxies February 24, 2016 12 / 18

Notizen

Notizen

Notizen



Performance

Research Question 2

Does the introduction of the transparent proxies affect the
performance of non-proxy code?

The Testing Procedure

Google Octane 2.0 Benchmark Suite

IonMonkey turned off / baseline JIT turned off

One run in each configuration

Scores: Bigger is better

Keil et al. Transparent Object Proxies February 24, 2016 13 / 18

Scores

Origin Transparent
Benchmark JIT Interpreter JIT Interpreter

DeltaBlue 453 82.5 466 79.6
RayTrace 462 182 462 174
EarleyBoyer 909 275 913 270
...

...
...

...
...

TypeScript 3708 1241 3666 1203

Total Score 1594 456 1610 445

Answer

There is no measurable difference. The difference is within
the range of measurement accuracy.

Keil et al. Transparent Object Proxies February 24, 2016 14 / 18

The User Level
Transparent Proxy

Just a new Proxy Constructor

1 var proxy = new TransparentProxy (target, handler);
2 proxy === target // evaluates to true

Caveat

Transparent proxies are slippery!

Library code may want to break the transparency
(e.g. for efficiency reasons)

Hard to manipulate because they have no identity

Keil et al. Transparent Object Proxies February 24, 2016 15 / 18

Notizen

Notizen

Notizen



The User Level
Identity Realms

Consists of a constructor for transparent proxies

Provides an equals function revealing proxies of that realm

Provides constructors for realm-aware data structures
(e.g. Map, Set, WeakMap, WeakSet)

Identity Realm

1 var realm = TransparentProxy.createRealm();
2 var proxy = realm.Proxy (target, handler);

1 proxy === target; // evaluates to true
2 realm.equals(proxy, target); // evaluates to false

Keil et al. Transparent Object Proxies February 24, 2016 16 / 18

In the Paper

Discussion of different use cases of proxies with respect to
the requirements on proxy transparency

Discussion of the programmer’s expectations from an
equality operator

Discussion of alternative designs to obtain transparency

Two different APIs for creating transparent proxies

Draft implementation of an observer proxy that guarantee
projection contracts

Keil et al. Transparent Object Proxies February 24, 2016 17 / 18

Conclusion

A significant number of object comparisons fail when mixing
opaque proxies and their target objects

Implementing contract systems with opaque proxies changes
the semantics of contract-abiding programs

Transparent proxies are a viable alternative

Neither the transparent nor the opaque implementation is
appropriate for all use cases

To preserve programmer expectations, transparent proxies
should be used as observer proxies
(cf. Chaperones vs. Impersonators in Racket)

Keil et al. Transparent Object Proxies February 24, 2016 18 / 18

Notizen

Notizen

Notizen



The User Level
Maps, Sets, and other Data Structures

Data structures depending on object equality needs to
handle transparent proxies

If obj1==obj2 then map.get(obj1)==map.get(obj2)

Normal Map

1 var realm = TransparentProxy.createRealm();
2 var tproxy1 = realm.Proxy (target, handler);
3 var tproxy2 = realm.Proxy (target, handler);

1 var map = new Map();
2 map.add(tproxy1, 1); // map : [#target −> (tproxy1, 1)]
3 map.add(tproxy2, 2); // map : [#target −> (tproxy2, 2)]

Keil et al. Transparent Object Proxies February 24, 2016 1 / 5

The User Level
Maps, Sets, and other Data Structures

Realm-aware Map

1 var realm = TransparentProxy.createRealm();
2 var tproxy1 = realm.Proxy (target, handler);
3 var tproxy2 = realm.Proxy (target, handler);

1 var map = realm.Map();
2 map.add(tproxy1, 1); // map : [#tproxy1 −> (tproxy1, 1)]
3 map.add(tproxy2, 2); // map : [..., #tproxy2 −> (tproxy2, 2)]

Keil et al. Transparent Object Proxies February 24, 2016 2 / 5

An Example

Proxies and Equality

Let x, f, g be some global elements:

1 var x = { /∗ some object ∗/ };
2 var f = function (y) { return x===y }
3 var g = function (f, x) { return f(x) }

Let C, D be two contracts implemented by proxies:

1 var h = g @ ([(C −> Any), D] −> Any)

The execution ends up in:

1 new Proxy(x, C Handler)) === new Proxy(x, D Handler))

Execution ends up in false instead of true!

Keil et al. Transparent Object Proxies February 24, 2016 3 / 5

Notizen

Notizen

Notizen



Identity Preserving Membrane
[Van Cutsem & Miller 2010]

ProxyA

?ProxyB

ProxyC

TargetA

TargetB

TargetC

x

z

y

x

z

y

Keil et al. Transparent Object Proxies February 24, 2016 4 / 5

Origin Transparent
Benchmark No-Ion No-JIT No-Ion No-JIT

Richards 505 64.8 509 64.3
DeltaBlue 453 82.5 466 79.6
Crypto 817 111 793 109
RayTrace 462 182 462 174
EarleyBoyer 909 275 913 270
RegExp 853 371 871 365
Splay 802 409 857 409
SplayLatency 1172 1336 1231 1338
NavierStokes 841 155 834 148
pdf.js 2759 704 2793 691
Mandreel 691 82.5 688 78.5
MandreelLatency 3803 526 3829 503
Gameboy Emulator 4275 556 4382 540
Code loading 9063 9439 9114 9502
Box2DWeb 1726 289 1736 282
zlib 28981 29052 28909 29108
TypeScript 3708 1241 3666 1203

Keil et al. Transparent Object Proxies February 24, 2016 5 / 5

Notizen

Notizen

Notizen


	Introduction
	Contract Systems
	The Twist
	Research Question 1

	Transparent Proxies
	Evaluation
	The Proxy API
	Conclusion
	Appendix
	Maps and Sets
	Contract Example
	Identity Preserving Membrane
	Evaluation


